Statistical Natural Language Processing

Distributed representations

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft
Summer Semester 2018

Representations of linguistic units

- Most ML methods we use depend on how we represent the objects of interest, such as
- words, morphemes
- sentences, phrases
- letters, phonemes
- documents
- speakers, authors
- ...
- The way we represent these objects interacts with the ML methods
- We will mostly talk about word representations
- They are also applicable any of the above

Symbolic (one-hot) representations

A common way to represent words is one-hot vectors

$$
\begin{aligned}
& \text { cat }=(0, \ldots, 1,0,0, \ldots, 0) \\
& \operatorname{dog}=(0, \ldots, 0,1,0, \ldots, 0) \\
& \text { book }=(0, \ldots, 0,0,1, \ldots, 0) \\
& \ldots
\end{aligned}
$$

- No notion of similarity
- Large and sparse vectors

More useful vector representations

- The idea is to represent similar words with similar vectors

$$
\begin{aligned}
\text { cat } & =(0,3,1, \ldots, 4) \\
\operatorname{dog} & =(0,3,0, \ldots, 3) \\
\text { book } & =(4,1,4, \ldots, 5)
\end{aligned}
$$

- •

- The similarity between the vectors may represent similarities based on
- syntactic
- semantic
- topical
- form
- ... features useful in a particular task

Where do the vector representations come from?

- The vectors are (almost certainly) learned from the data
- Typically using an unsupervised (or self-supervised) method
- The idea goes back to,

You shall know a word by the company it keeps. -Firth (1957)

- In practice, we make use of the contexts (company) of the words to determine their representations
- The words that appear in similar contexts are mapped to similar representations

How to calculate word vectors?

count word in context
$\left.\begin{array}{r}\text { cat } \\ \underset{\text { book }}{\operatorname{dog}}\end{array} \begin{array}{ccccc}\mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3} & \ldots & c_{\mathfrak{m}} \\ 0 & 3 & 1 & \ldots & 4 \\ 0 & 3 & 0 & \ldots & 3 \\ 4 & 1 & 4 & \ldots & 5\end{array}\right]$

+ Now words that appear in the same contexts will have similar vectors
- The frequencies are often normalized (PMI, TF-IDF)
- The data is highly correlated: lots of redundant information
- Still large and sparse

How to calculate word vectors?

count, factorize, truncate

$$
\begin{aligned}
& \\
& w_{1} \\
& w_{2} \\
& w_{3}
\end{aligned}\left[\begin{array}{ccccc}
c_{1} & c_{2} & c_{3} & \ldots & c_{\mathfrak{m}} \\
0 & 3 & 1 & \ldots & 4 \\
0 & 3 & 0 & \ldots & 3 \\
4 & 1 & 4 & \ldots & 5
\end{array}\right]=
$$

$$
\left[\begin{array}{ccccc}
1 & 5 & 9 & \ldots & 4 \\
1 & 4 & 1 & \ldots & 3 \\
9 & 1 & 1 & \ldots & 5 \\
& & \ldots & &
\end{array}\right]\left[\begin{array}{cccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{m}
\end{array}\right]\left[\begin{array}{ccccc}
c_{1} & c_{2} & c_{3} & \ldots & c_{m} \\
{\left[\begin{array}{ccccc}
0 & 3 & 1 & \ldots & 4 \\
0 & 3 & 0 & \ldots & 3 \\
9 & 1 & 8 & \ldots & 0
\end{array}\right]}
\end{array} \begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right.
$$

How to calculate word vectors?

predict the context from the word, or word from the context

- The task is predicting
- the context of the word from the word itself
- or the word from its context
- Task itself is not interesting
- We are interested in the hidden layer
 representations learned

How to calculate word vectors?
 latent variable models (e.g., LDA)

- Assume that the each 'document' is generated based on a mixture of latent variables
- Learn the probability distributions
- Typically used for topic modeling
- Can model words too (as a mixture of latent variables)

A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:
S1: She likes cats and dogs
S2: He likes dogs and cats

S3: She likes books
S4: He reads books

Term-document (sentence) matrix

	S1	S2	S3	S4
she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:
S1: She likes cats and dogs
S2: He likes dogs and cats
S3: She likes books
S4: He reads books

Term-term (left-context) matrix

	*	$\underset{\sim}{\approx}$	$\stackrel{\square}{\square}$	- \%	¢	¢	${ }_{0}^{60}$	\%	శ్త్ర
she	2	0	0	0	0	0	0	0	0
he	2	0	0	0	0	0	0	0	0
likes	0	2	1	0	0	0	0	0	0
reads	0	0	1	0	0	0	0	0	0
cats	0	0	0	1	0	0	0	0	1
dogs	0	0	0	1	0	0	0	0	1
books	0	0	0	1	1	0	0	0	0
and	0	0	0	0	0	1	1	0	0

Term-document matrices

- The rows are about the terms: similar terms appear in similar contexts
- The columns are about the context: similar contexts contain similar words
- The term-context matrices are typically sparse and large

Term-document (sentence) matrix

	S1	S2	S3	S4
she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

SVD (again)

- Singular value decomposition is a well-known method in linear algebra
- An $n \times m$ (n terms m documents) term-document matrix X can be decomposed as

$$
\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}
$$

U is a $n \times r$ unitary matrix, where r is the rank of X $(r \leqslant \min (n, m))$. Columns of \mathbf{U} are the eigenvectors of $X X^{\top}$
Σ is a $r \times r$ diagonal matrix of singular values (square root of eigenvalues of $\mathbf{X X}{ }^{\top}$ and $X^{\top} \mathbf{X}$)
V^{\top} is a $r \times m$ unitary matrix. Columns of V are the eigenvectors of $X^{\top} X$

- One can consider \mathbf{U} and \mathbf{V} as PCA performed for reducing dimensionality of rows (terms) and columns (documents)

Truncated SVD

$$
\mathbf{X}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}
$$

- Using eigenvectors (from \mathbf{U} and V) that correspond to k largest singular values ($k<r$), allows reducing dimensionality of the data with minimum loss
- The approximation,

$$
\hat{\mathbf{X}}=\mathbf{U}_{\mathrm{k}} \boldsymbol{\Sigma}_{\mathrm{k}} \mathbf{V}_{\mathrm{k}}
$$

results in the best approximation of \mathbf{X}, such that $\|\hat{\mathbf{X}}-\mathbf{X}\|_{F}$ is minimum

Truncated SVD

$$
\mathbf{X}=\mathbf{U} \Sigma \mathbf{V}^{\top}
$$

- Using eigenvectors (from \mathbf{U} and \mathbf{V}) that correspond to k largest singular values ($k<r$), allows reducing dimensionality of the data with minimum loss
- The approximation,

$$
\hat{\mathbf{X}}=\mathbf{U}_{\mathrm{k}} \boldsymbol{\Sigma}_{\mathrm{k}} \mathbf{V}_{\mathrm{k}}
$$

results in the best approximation of \mathbf{X}, such that $\|\hat{\mathbf{X}}-\mathbf{X}\|_{F}$ is minimum

- Note that r and n may easily be millions (of words or contexts), while we choose k much smaller (a few hundreds)

Truncated SVD (2)

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, m} \\
x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, m} \\
x_{2,1} & x_{2,2} & x_{2,3} & \ldots & x_{2, m} \\
x_{3,1} & x_{3,2} & x_{3,3} & \ldots & x_{3, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & x_{n, 3} & \ldots & x_{n, m}
\end{array}\right]=} \\
{\left[\begin{array}{ccc}
u_{1,1} & \ldots & u_{1, k} \\
u_{2,1} & \ldots & u_{2, k} \\
u_{3,1} & \ldots & u_{3, k} \\
\vdots & \ddots & \vdots \\
u_{n, 1} & \ldots & u_{n, k}
\end{array}\right] \times\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{k}
\end{array}\right] \times\left[\begin{array}{cccc}
v_{1,1} & v_{1,2} & \ldots & v_{1, m} \\
\vdots & \vdots & \ddots & \vdots \\
v_{k, 1} & v_{k, 2} & \ldots & v_{n, m}
\end{array}\right]}
\end{gathered}
$$

Truncated SVD (2)

$$
\begin{gathered}
\\
\\
\\
{\left[\begin{array}{cccccc}
u_{1,1} & \ldots & u_{1, k} \\
u_{2,1} & \ldots & u_{2, k} \\
u_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, m} \\
x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, m} \\
x_{2,1} & x_{2,2} & x_{2,3} & \ldots & x_{2, m} \\
x_{3,1} & x_{3,2} & x_{3,3} & \ldots & x_{3, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \ddots & u_{3, k} \\
u_{n, 1} & \ldots & u_{n, 2} & x_{n, 3} & \ldots & x_{n, m}
\end{array}\right] \times\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{k}
\end{array}\right] \times\left[\begin{array}{cccc}
v_{1,1} & v_{1,2} & \ldots & v_{1, m} \\
\vdots & \vdots & \ddots & \vdots \\
v_{k, 1} & v_{k, 2} & \ldots & v_{n, m}
\end{array}\right]}
\end{gathered}
$$

The term ${ }_{1}$ can be represented using the first row of \mathbf{U}_{k}

Truncated SVD (2)

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, m} \\
x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1, m} \\
x_{2,1} & x_{2,2} & x_{2,3} & \ldots & x_{2, m} \\
x_{3,1} & x_{3,2} & x_{3,3} & \ldots & x_{3, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{n, 1} & x_{n, 2} & x_{n, 3} & \ldots & x_{n, m}
\end{array}\right]=} \\
{\left[\begin{array}{ccc}
u_{1,1} & \ldots & u_{1, k} \\
u_{2,1} & \ldots & u_{2, k} \\
u_{3,1} & \ldots & u_{3, k} \\
\vdots & \ddots & \vdots \\
u_{n, 1} & \ldots & u_{n, k}
\end{array}\right] \times\left[\begin{array}{ccc}
\sigma_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma_{k}
\end{array}\right] \times\left[\begin{array}{cccc}
v_{1,1} & v_{1,2} & \ldots & v_{1, m} \\
\vdots & \vdots & \ddots & \vdots \\
v_{k, 1} & v_{k, 2} & \ldots & v_{n, m}
\end{array}\right]}
\end{gathered}
$$

The document ${ }_{1}$ can be represented using the first column of V_{k}^{\top}

Truncated SVD: with a picture

Step 1 Get word-context associations

Truncated SVD: with a picture

Step 1 Get word-context associations
Step 2 Decompose

Truncated SVD: with a picture

Step 1 Get word-context associations
Step 2 Decompose
Step 3 Truncate

Truncated SVD example

The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books
$\begin{array}{llll}\text { S1 } & \text { S2 } & \text { S3 } & \text { S4 }\end{array}$

she	1	0	1	0
he	0	1	0	1
likes	1	1	1	0
reads	0	0	0	1
cats	1	1	0	0
dogs	1	1	0	0
books	0	0	1	1
and	1	1	0	0

Truncated SVD $(k=2)$

$$
\begin{aligned}
& \mathbf{U}=\left[\begin{array}{rr}
-0.30 & 0.28 \\
-0.24 & -0.63 \\
-0.52 & 0.15 \\
-0.03 & -0.49 \\
-0.43 & 0.01 \\
-0.43 & 0.01 \\
-0.03 & -0.49 \\
-0.43 & 0.01
\end{array}\right] \begin{array}{l}
\text { she } \\
\text { he } \\
\text { likes } \\
\text { reads } \\
\text { cats } \\
\text { dogs } \\
\text { books } \\
\text { and }
\end{array} \\
& \mathbf{\Sigma}=\left[\begin{array}{cc}
3.11 & 0 \\
0 & 1.81
\end{array}\right] \\
& \mathbf{V}^{\boldsymbol{\top}}=\left[\begin{array}{cccc}
-0.68 & \mathrm{~S} 2 & \mathrm{O} 26 & -0.11 \\
-0.66 & -0.23 & 0.48 & -0.66 \\
\hline
\end{array}\right]
\end{aligned}
$$

Truncated SVD (with BOW sentence context)

The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books

Truncated SVD (with single word context)

The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books

SVD: LSI/LSA

SVD applied to term-document matrices are called

- Latent semantic analysis (LSA) if the aim is constructing term vectors
- Semantically similar words are closer to each other in the vector space
- Latent semantic indexing (LSI) if the aim is constructing document vectors
- Topicaly related documents are closer to each other in the vector space

Context matters

In SVD (and other) vector representations, the choice of context matters

- Larger contexts tend to find semantic/topical relationships
- Smaller (also order-sensitive) contexts tend to find syntactic generalizations

SVD based vectors: practical concerns

- In practice, instead of raw counts of terms within contexts, the term-document matrices typically contain
- pointwise mutual information
- tf-idf
- If the aim is finding latent (semantic) topics, frequent/syntactic words (stopwords) are often removed
- Depending on the measure used, it may also be important to normalize for the document length

SVD-based vectors: applications

- The SVD-based methods is commonly used in information retrieval
- The system builds document vectors using SVD
- The search terms are also considered as a 'document'
- System retrieves the documents whose vectors are similar to the search term
- The well known Google PageRank algorithm is a variation of the SVD

In this context, the results is popularly called "the $\$ 25000000000$ eigenvector".

SVD-based vectors: applications

- The SVD-based methods for semantic similarity is also common
- It was shown that the vector space models outperform humans in
- TOEFL synonym questions

Receptors for the sense of smell are located at the top of the nasal cavity.
A. upper end B. inner edge C. mouth D. division

- SAT analogy questions

Paltry is to significance as \qquad is to \qquad .
A. redundant : discussion
B. austere : landscape
C. opulent: wealth
D. oblique : familiarity
E. banal : originality

- In general the SVD is a very important method in many fields

Predictive models

- Instead of dimensionality reduction through SVD, we try to predict
- either the target word from the context
- or the context given the target word
- We assign each word to a fixed-size random vector
- We use a standard ML model and try to reduce the prediction error with a method like gradient descent
- During learning, the algorithm optimizes the vectors as well as the model parameters
- In this context, the word-vectors are called embeddings
- This types of models has been very popular during last few years

Predictive models

- The idea is the 'locally' predict the context a particular word occurs
- Both the context and the words are represented as low dimensional dense vectors
- Typically, neural networks are used for the prediction
- The hidden layer representations are the vectors we are interested

word2vec

- word2vec is a popular algorithm and open source application for training word vectors (Mikolov et al. 2013)
- It has two modes of operation

CBOW or continuous bag of words predict the word using a window around the word
Skip-gram does the reverse, it predicts the words in the context of the target word using the target word as the predictor

word2vec

CBOW and skip-gram modes - conceptually

CBOW

Skip-gram

word2vec

a bit more in detail

- For each word w algorithm learns two sets of embeddings
v_{w} for words
c_{w} for contexts
- Objective of the learning is to maximize (skip-gram)

$$
\mathrm{P}(\mathrm{c} \mid w)=\frac{e^{v_{w} \cdot \mathrm{c}_{\mathrm{c}}}}{\sum_{\mathbf{c}^{\prime} \in \mathbf{c} \mathrm{e}^{\mathfrak{c}_{c^{\prime}} v_{w}}}}
$$

Note that the above is simply softmax - the learning method is equivalent to logistic regression

- Now, we can use gradient-based approaches to find word and context vectors that maximize this objective

Issues with softmax

$$
\mathrm{P}(\mathrm{c} \mid w)=\frac{e^{v_{w} \cdot c_{c}}}{\sum_{c^{\prime} \in c^{c}} \mathrm{e}^{\mathrm{c}_{c^{\prime} v_{w}}}}
$$

- A particular problem with models with a softmax output is high computational cost:
- For each instance in the training data denominator need to be calculated over the whole vocabulary (can easily be millions)
- Two workarounds exist:
- Negative sampling: a limited number of negative examples (sampled from the corpus) are used to calculate the denominator
- Hierarchical softmax: turn output layer to a binary tree, where probability of a word equals to the probability of the path followed to find the word
- Both methods are applicable to training, during prediction, we still need to compute the full softmax

word2vec: some notes

- Note that word2vec is not 'deep'
- word2vec preforms well, and it is much faster than earlier (more complex) ANN architectures developed for this task
- The resulting vectors used by many (deep) ANN models, but they can also be used by other 'traditional' methods
- word2vec treats the context as a BoW, hence vectors capture semantic relationships
- There are many alternative formulations
- GloVe is another popular method for obtaining word vectors (Pennington, Socher, and Manning 2014)
- It tries to combine intuitions from both SVD-like 'counting' methods, and prediction-based methods
- It is reported performs better on smaller data sets

Word vectors and syntactic/semantic relations

Word vectors map some syntactic/semantic relations to vector operations

Word vectors and syntactic/semantic relations

Word vectors map some syntactic/semantic relations to vector operations

- Paris - France + Italy = Rome

Word vectors and syntactic/semantic relations

Word vectors map some syntactic/semantic relations to vector operations

- Paris - France + Italy $=$ Rome
- king - man + woman $=$ queen

Word vectors and syntactic/semantic relations

Word vectors map some syntactic/semantic relations to vector operations

- Paris - France + Italy = Rome
- king - man + woman $=$ queen
- ducks - duck + mouse $=$ mice

Using vector representations

- Dense vector representations are useful for many ML methods
- They are particularly suitable for neural network models
- 'General purpose' vectors can be trained on unlabeled data
- They can also be trained for a particular purpose, resulting in 'task specific' vectors
- Dense vector representations are not specific to words, they can be obtained and used for any (linguistic) object of interest

Evaluating vector representations

- Like other unsupervised methods, there are no 'correct' labels
- Evaluation can be based on
- Intrinsic evaluation based on success on finding analogy/synonymy
- Extrinsic evaluation, based on whether they improve a particular task (e.g., parsing, sentiment analysis) or not
- Correlation with human judgments

Differences of the methods

...or the lack thereof

- It is often claimed, after excitement created by word2vec, that prediction-based models work better
- Careful analyses suggest, however, that word2vec can be seen as an approximation to a special case of SVD
- Performance differences seem to boil down to how well the hyperparameters are optimized
- In practice, the computational requirements is probably a bigger factor in choice

Summary

- Dense vector representations of linguistic units (as opposed to symbolic representations) allow calculating similarity/difference between the units
- They can be either based on counting (SVD), or predicting (word2vec, GloVe)
- They are particularly suitable for ANNs, deep learning architectures

Summary

- Dense vector representations of linguistic units (as opposed to symbolic representations) allow calculating similarity/difference between the units
- They can be either based on counting (SVD), or predicting (word2vec, GloVe)
- They are particularly suitable for ANNs, deep learning architectures

Next:
Mon Text classification
Fri Q\&A, other NLP applications (?)

Additional reading, references, credits

- Upcoming edition of the textbook (Jurafsky and Martin 2009, ch. 15 and ch.16) has two chapters covering the related material.
- See Levy, Goldberg, and Dagan (2015) for a comparison of different ways of obtaining embeddings.

