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Recap Clustering Density estimation PCA

Supervised learning

• The methods we studied so far are instances of supervised
learning

• In supervised learning, we have a set of predictors x, and
want to predict a response or outcome variable y

• During training, we have both input and output variables
• Training consist of estimating parameters w of a model
• During prediction, we are given x and make predictions

based on model we learned
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Supervised learning: regression

x

y

• The response (outcome)
variable (y) is a
quantitative variable.

• Given the features (x) we
want to predict the value
of y
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Supervised learning: classification
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• The response (outcome) is
a label. In the example:
positive + or negative −

• Given the features (x1 and
x2), we want to predict the
label of an unknown
instance ?
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Supervised learning: estimating parameters

• Most models/methods estimate a set of parameters w
during training

• Often we find the parameters that minimize a loss function
– For least-squares regression

J(w) =
∑
i

(ŷi − yi)
2 + ∥w∥

– For logistic regression, the negative log likelihood

J(w) = −logL(w) + ∥w∥

• If the loss function is convex, we can find a global minimum.
Sometimes with an analytic solution, sometimes using
search methods such as gradient descent
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Today’s lecture

• Clustering: find related groups of instances
• Density estimation: find a probability distribution that

explains the data
• Dimensionality reduction: find an accurate/useful lower

dimensional representation of the data

…and soon
• Unsupervised learning in ANNs (RBMs, autoencoders)
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Unsupervised learning

• In unsupervised learning, we do not have labels in our
training data

• Our aim is to find useful patterns/structure in the data
– for exploratory study of the data
– for augmenting / complementing supervised methods

• Close relationships with ‘data mining’, ‘data science /
analytics’, ‘knowledge discovery’

• All unsupervised methods can be cast as graphical models
with hidden variables

• Evaluation is difficult: we do not have ‘true’ labels/values
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Clustering: why do we do it?

• The aim is to find groups of instances/items that are
similar to each other

• Applications include
– Clustering languages, dialects for determining their

relations
– Clustering (literary) texts, for e.g., authorship attribution
– Clustering words for e.g., better parsing
– Clustering documents, e.g., news into topics
– …
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Clustering in two dimensional space

x1

x2

• Unlike classification, we do
not have labels

• We want to find ‘natural’
groups in the data

• Intuitively, similar or
closer data points are
grouped together

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 8 / 42

Recap Clustering Density estimation PCA

Similarity and distance

• The notion of distance (similarity) is important in
clustering. A distance measure D,

– is symmetric: D(a,b) = D(b,a)
– non-negative: D(a,b) ⩾ 0

for all a,b, and it D(a,b) = 0 iff a = b

– obeys triangle inequality: D(a,b) +D(b, c) ⩾ D(a, c)

• The choice of distance is application specific
• We will often face with defining distance measures

between linguistic units (letters, words, sentences,
documents, …)
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Distance measures in Euclidean space

• Euclidean distance:

∥a− b∥ =

√√√√ k∑
j=1

(aj − bj)2

• Manhattan distance:

∥a− b∥1 =

k∑
j=1

|aj − bj|
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How to do clustering
Most clustering algorithms try to minimize the scatter within
each cluster. Which is equivalent to maximizing the scatter
between clusters.

x1

x2

K∑
k=1

∑
a∈Ck

∑
b∈Ck

d(a,b)

K∑
k=1

∑
a∈Ck

∑
b̸∈Ck

d(a,b)
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K-means algorithm
K-means is a popular method for clustering.

1. Randomly choose centroids, m1, . . . ,mK, representing K
clusters

2. Repeat until convergence
– Assign each data point to the cluster of the nearest centroid
– Re-calculate the centroid locations based on the

assignments

Effectively, we are finding a local minimum of the sum of
squared Euclidean distance within each cluster

1

2

K∑
k=1

∑
ainCk

∑
b∈Ck

∥a− b∥2

* Note the similarity with the EM algorithm
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K-means clustering: visualization
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• The data
• Set cluster centroids

randomly
• Assign data points

to the closest
centroid

• Recalculate the
centroids
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K-means: some issues

• K-means requires the data to be in an Euclidean space
• K-means is sensitive to outliers
• The results are sensitive to initialization

– There are some smarter ways to select initial points
– One can do multiple initializations, and pick the best

(with lowest within-group squares)

• It works well with approximately equal-size round-shaped
clusters

• We need to specify number of clusters in advance
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How many clusters?

• The number of clusters is defined for some problems, e.g.,
classifying news into a fixed set of topics/interests

• For others, there is no clear way to select the best number
of clusters

• The error (within cluster scatter) always decreases with
increasing number of clusters, using a test set or cross
validation is not useful either

• A common approach is clustering for multiple K values,
and picking where there is an ‘elbow’ in the graph against
the error function

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 15 / 42

Recap Clustering Density estimation PCA

How many clusters?

K

J(w)

1 2 3 4 5 6 7 8 9

40
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This plot is sometimes called a scree plot.
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K-medoids

• K-medoids algorithm is an alternation of K-means
• Instead of calculating centroids, we try to find most typical

data point (medoids) at each iteration
• K-medoids can work with distances, does not need feature

vectors to be in an Euclidean space
• It is less sensitive to outliers
• It is computationally more expensive than K-means
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Hierarchical clustering

• Instead of a flat division to clusters as in K-means,
hierarchical clustering builds a hierarchy based on
similarity of the data points

• There are two main ‘modes of operation’:
Bottom-up or agglomerative clustering

• starts with individual data points,
• merges the clusters until all data is in a single cluster

Top-down or divisive clustering
• starts with a single cluster,
• and splits until all leaves are single data points
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Hierarchical clustering

• Hierarchical clustering operates on differences (or
similarities)

• The result is a binary tree called dendrogram
• Dendrograms are easy to interpret (especially if data is

hierarchical)
• The algorithm does not commit to the number of clusters K

from the start, the dendrogram can be ‘cut’ at any height
for for determining the clusters
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Agglomerative clustering

1. Compute the
similarity/distance matrix

2. Assign each data point to
its own cluster

3. Repeat until no clusters left
to merge

– Pick two clusters that
are most similar to each
other

– Merge them into a single
cluster

1 2 3 4 5
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Agglomerative clustering demonstration
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How to calculate between cluster distances

Complete maximal
inter-cluster distance

Single minimal
inter-cluster distance

Average mean inter-cluster
distance

Centroid distance between the
centroids

x1

x2

1 2

3

4

5

Note: we only need distances, (feature) vectors are not necessary
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Clustering evaluation

Evaluating clustering results is often non-trivial
• Internal evaluation is based a metric that aims to indicate

‘good clustering’: e.g., Dunn index, gap statistic, silhouette
• External metrics can be useful if we have labeled test data:

e.g., V-measure, B3ed F-score
• The results can be tested on the target application: e.g.,

word-clusters evaluated based on their effect on parsing
accuracy

• Human judgments, manual evaluation – ‘looks good to me’
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Clustering evaluation
internal metric example: silhouette

si =
b(i) − a(i)

max(a(i),b(i))

where
a(i) average distance between object i

and and objects in the same
cluster

b(i) average distance between object i
and and objects in the closest
cluster

x1

x2

1 2

3

4

5
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Clustering evaluation
external metrics: general intution

• We want clusters that
contain members of a
single gold-standard class
(homogeniety)

• We want all members of a
class to be in a single
cluster (completeness)

Cluster 1 Cluster 2 Cluster 3

Note the similarity with precision and recall.
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Clustering: some closing notes

• We do not have proper evaluation procedures for
clustering results (for unsupervised learning in general)

• Clustering is typically unstable, slight changes in the data
or parameter choices may change the results drastically

• Approaches against instability include some validation
methods, or producing ‘probabilistic’ dendrograms by
running clustering with different options
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Density estimation

• K-means treats all data points in a cluster equally
• A ‘soft’ version of K-means is density estimation for

Gaussian mixtures, where
– We assume the data comes from a mixture of K Gaussian

distributions
– We try to find the parameters of each distribution (instead

of centroids) that maximizes the likelihood of the data

• Unlike K-means, mixture of Gaussians assigns probabilities
for each data point belonging to one of the clusters

• It is typically estimated using the
expectation-maximization (EM) algorithm

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 27 / 42

Recap Clustering Density estimation PCA

Density estimation using the EM algorithm

• The EM algorithm (or its variations) is used in learning
models with latent/hidden variables

• It is closely related to the K-means algorithm

1. Initialize the parameters (e.g., randomly) of K multivariate
normal distributions (µ,Σ)

2. Iterate until convergence:
E-step Given the parameters, compute the membership ‘weights’,

the probability of each data point belonging to each
distribution

M-step Re-estimate the mixture density parameters using the
calculated membership weights in the E-step
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Principal component Analysis

• Principal component analysis (PCA) is a method of
dimensionality reduction

• PCA maps the original data into a lower dimensional space
by a linear transformation (rotation)

• The transformed lower-dimensional variables retain most
of the variation (=information) in the input

• PCA can be used for
– visualization
– data compression
– reducing dimensionality of features for other machine

learning methods
– eliminating noise
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PCA: a toy example

x1

x2

p1

p2

p3

-4
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3
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4

4

Questions:
• How many dimensions do

we have?
• How many dimensions do

we need?
• Short divergence: calculate

the covariance matrix

Σ =

[
18
3

8

8 32
3

]

– What is the correlation
between x1 and x2?
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PCA: A toy example (2)
x1

x2

p1

p2

p3
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-1 00
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4What if we reduce the data to:

z1

z2
p1 p2 p3

-5 0 5

Going back to the original coordinates is easy, rotate using:

A =

[
cos θ − sin θ
sin θ cos θ

]
=

[
3
5

−4
5

4
5

3
5

]

p1 = A×
[
−5

0

]
=

[
−3

−4

]
p1 = A×

[
0

0

]
=

[
0

0

]
p1 = A×

[
5

0

]
=

[
3

4

]
We can recover the original points perfectly. In this example the
inherent dimensionality of the data is only 1.
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PCA: A toy example (3)
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• What if the variables were
not perfectly but strongly
correlated?

• We could still do a similar
transformation:

z1

z2
p1 p2 p3

-5 0 5

• Discarding z2 results in a
small reconstruction error:

p1 = A×
[
−5

0

]
=

[
−3

−4

]
• Note: z1 (also z2) is a linear

combination of original
variables
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Why do we want to reduce the dimensionality

• Visualizing high-dimensional data becomes possible
• If we use the data for other ML methods,

– we reduce the computation time
– we may avoid ‘the curse of dimensionality’

• Decorrelation is useful in some applications
• We compress the data (in a lossy way)
• We eliminate noise (assuming a high signal to noise ratio)
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Different views on PCA

x1

x2 PC1
• Find the direction of the

largest variance
• Find the projection with

the least reconstruction
error

• Find a lower dimensional
latent Gaussian variable
such that the observed
variable is a mapping of
the latent variable to a
higher dimensional space
(with added noise)
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How to find PCs

• When viewed as maximizing variance or reducing the
reconstruction error, we can write the appropriate objective
function and find the vectors that minimize it

• In latent variable interpretation, we can use EM as in
estimating mixtures of Gaussians

• The principle components are the eigenvectors of the
correlation matrix, where large eigenvalues correspond to
components with large variation

• A numerically stable way to obtain principal components is
doing singular value decomposition (SVD) on the input data
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PCA as matrix factorization (eigenvalue
decomposition)

• One can compute PCA by decomposing the covariance
matrix as (note Σ = XTX)

Σ = UΛUT

– the columns of U are the principal components
(eigenvectors)

– Λ is a diagonal matrix of eigenvalues
• Another option is SVD, which factorizes the input vector

(k variables × n data points) as
X = UDV∗

– U (k× k) contains the eigenvectors as before,
– D (k× n) diagonal matrix D2 = Λ

– V∗ is a n× n unitary matrix
* The above is correct for standardized variables, otherwise the formulas get slightly more complicated.
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A practical example
(with simplified/fake data)

• Our data consists of ‘measurements’ from speech signal of
instances of two vowels, we have 12 measurements for each
vowel instance


5.19 4.33 14.76 30.08 14.73 7.06 15.56 24.46 8.51 . . .
2.99 5.25 11.69 19.27 18.02 11.04 13.34 38.13 8.70 . . .
6.25 6.05 13.88 19.26 17.81 6.95 12.58 39.74 9.58 . . .
7.24 5.43 15.15 18.93 15.69 10.18 14.89 34.86 10.03 . . .
6.07 6.27 13.34 17.60 19.98 11.04 13.28 36.02 8.66 . . .

. . .


• How do we visualize this data?
• Are all 12 variables useful?
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A practical example
Visualizing with pairwise scatter plots
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A practical example
Plotting the first two principal components

-10 -5 0 5 10

-5
0

5

PC1

PC
2
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A practical example
How many components to keep? (scree plot)
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Some practical notes on PCA

• Variables need to be centered
• Scales of the variables matter, standardizing may be a good

idea depending on the units/scales of the individual
variables

• The sign/direction of the principal component (vector) is
not important

• If there are more variables than the data points, we can still
calculate the principal components, but there will be at
most n− 1 PCs

• PCA will be successful if variables are correlated, there are
extensions for dealing with nonlinearities (e.g., kernel
PCA, ICA, t-SNE)
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Summary

• In unsupervised learning, we do not have labels. Our aim
is to find/exploit (latent) structure in the data

• Unsupervised methods try to discover ‘hidden’ structure
in the data
Clustering finds groups in the data

Density estimation estimates parameters of latent
probability distributions

Dimensionality reduction transforms the data in a low
dimensional space while keeping most of the
information in the original data

Next:
Mon Artificial neural networks (ANNs)
Wed Deadline for assignment 3, assignment 4 will be out
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Derivation of PCA by maximizing the variance

• We focus on the first PC (z1), which maximizes the
variance of the data onto itself

• We are interested only on the direction, so we choose z1 to
be a unit vector (∥z1∥ = 1)

• Remember that to project a vector onto another, we simply
use dot product, So the projected data points are zxi for
i = 1, . . . ,N.

• The variance of the projected data points (that we want to
maximize) is,

σz1
=

1

N

N∑
i

(z1xi − z1x̄i)
2 = zT1Σz

where Σx is the covariance matrix of the unprojected data
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Derivation of PCA by maximizing the variance (cont.)
• The problem becomes maximize

zT1Σz

with the constraint ∥z1∥ = zT1z1 = 1

• Turning it into a unconstrained optimization problem with
Lagrange multipliers, we minimize

zT1Σz+ λ1(1− zT1z1)

• Taking the derivative and setting it to 0 gives us

Σz1 = λ1z1

Note: by definition, z1 is an eigenvector of Σ, and λ1 is the
corresponding eigenvalue

• z1 is the first principal component, we can now compute
the second principal component with the constraint that it
has to be orthogonal to the first one
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