Statistical Natural Language Processing

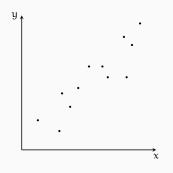
Unsupervised machine learning

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2018

Supervised learning: regression



- The response (outcome) variable (y) is a quantitative variable.
- Given the features (x) we want to predict the value

Ç. Çöltekin, SfS / University of Tübing

Summer Semester 2018 2 / 42

Recap Clustering Density estimation PCA

Supervised learning: estimating parameters

- ullet Most models/methods estimate a set of parameters wduring training
- Often we find the parameters that minimize a loss function
 - For least-squares regression

$$J(w) = \sum_{i} (\hat{y}_i - y_i)^2 + ||w||$$

- For logistic regression, the negative log likelihood

$$J(w) = -\log \mathcal{L}(w) + ||w||$$

• If the loss function is *convex*, we can find a *global* minimum. Sometimes with an analytic solution, sometimes using search methods such as gradient descent

Ç. Çöltekin, SfS / University of Tübingen

Unsupervised learning

- In unsupervised learning, we do not have labels in our training data
- Our aim is to find useful patterns/structure in the data
 - for exploratory study of the data
 - for augmenting / complementing supervised methods
- Close relationships with 'data mining', 'data science / analytics', 'knowledge discovery'
- All unsupervised methods can be cast as graphical models with hidden variables
- Evaluation is difficult: we do not have 'true' labels/values

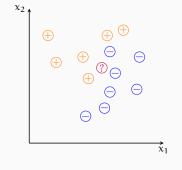
Supervised learning

- The methods we studied so far are instances of supervised learning
- ullet In supervised learning, we have a set of predictors x, and want to predict a response or outcome variable y
- During training, we have both input and output variables
- Training consist of estimating parameters w of a model
- \bullet During prediction, we are given x and make predictions based on model we learned

Ç. Çöltekin, SfS / University of Tübingen

Recap Clustering Density estimation PCA

Supervised learning: classification



- The response (outcome) is a label. In the example: positive or negative
- Given the features (x1 and x_2), we want to predict the label of an unknown instance 😲

Ç. Çöltekin, SfS / University of Tübing

Today's lecture

- Clustering: find related groups of instances
- Density estimation: find a probability distribution that explains the data
- Dimensionality reduction: find an accurate/useful lower dimensional representation of the data

...and soon

• Unsupervised learning in ANNs (RBMs, autoencoders)

Ç. Çöltekin, SfS / University of Tübingen

Recap Clustering Density estimation PCA

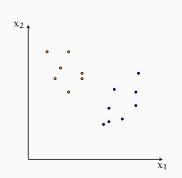
Clustering: why do we do it?

- The aim is to find groups of instances/items that are similar to each other
- Applications include
 - Clustering languages, dialects for determining their
 - Clustering (literary) texts, for e.g., authorship attribution
 - Clustering words for e.g., better parsing
 - Clustering documents, e.g., news into topics

Ç. Çöltekin, SfS / University of Tübingen C. Cöltekin. SfS / University of Tübingen

Clustering in two dimensional space

Recap Clustering Density estimation PCA



- Unlike classification, we do not have labels
- We want to find 'natural' groups in the data
- Intuitively, similar or closer data points are grouped together

. Çöltekin, SfS / University of Tübinger

Summer Semester 2018

8 / 42

Recap Clustering Density estimation PCA

Distance measures in Euclidean space

• Euclidean distance:

$$\|a-b\|=\sqrt{\sum_{j=1}^k(a_j-b_j)^2}$$

• Manhattan distance:

$$\|\mathbf{a} - \mathbf{b}\|_1 = \sum_{j=1}^k |a_j - b_j|$$

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018

10 / 4

Recap Clustering Density estimation PCA

K-means algorithm

K-means is a popular method for clustering.

- 1. Randomly choose *centroids*, m_1, \ldots, m_K , representing K clusters
- 2. Repeat until convergence
 - Assign each data point to the cluster of the nearest centroid
 - Re-calculate the centroid locations based on the assignments

Effectively, we are finding a *local minimum* of the sum of squared Euclidean distance within each cluster

$$\frac{1}{2} \sum_{k=1}^{K} \sum_{\alpha \in C_k} \sum_{b \in C_k} \|\alpha - b\|^2$$

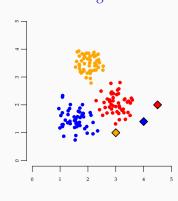
 $\ensuremath{^{*}}$ Note the similarity with the EM algorithm

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 12 /

Recap Clustering Density estimation PCA

K-means clustering: visualization



- The data
- Set cluster centroids randomly
- Assign data points to the closest centroid
- Recalculate the centroids

Similarity and distance

 \bullet The notion of distance (similarity) is important in clustering. A distance measure $D_{\textrm{\tiny \it T}}$

Recap Clustering Density estimation PCA

- is symmetric: D(a,b) = D(b,a)
- non-negative: $D(a,b) \geqslant 0$
- for all α , b, and if $D(\alpha,b)=0$ iff $\alpha=b$ obeys triangle inequality: $D(\alpha,b)+D(b,c)\geqslant D(\alpha,c)$
- The choice of distance is application specific
- We will often face with defining distance measures between linguistic units (letters, words, sentences, documents, ...)

C. Cöltekin, SfS / University of Tübingen

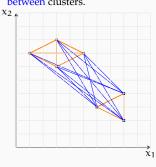
Summer Semester 20:

ouniner ochiester 20

Recap Clustering Density estimation PCA

How to do clustering

Most clustering algorithms try to minimize the scatter within each cluster. Which is equivalent to maximizing the scatter between clusters.



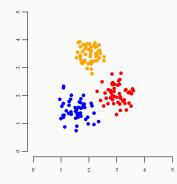
 $\sum_{k=1}^{K} \sum_{\alpha \in C_k} \sum_{b \in C_k} d(\alpha, b)$

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018

Recap Clustering Density estimation PCA

K-means clustering: visualization



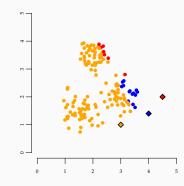
- The data
- Set cluster centroids randomly
- Assign data points to the closest centroid
- Recalculate the centroids

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 13 /

Recap Clustering Density estimation PCA

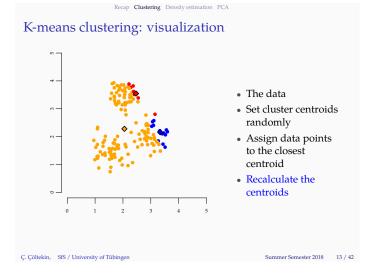
K-means clustering: visualization

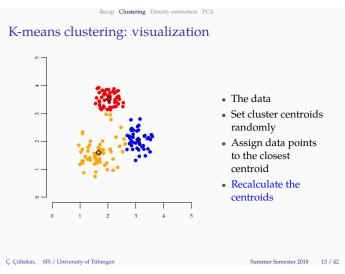


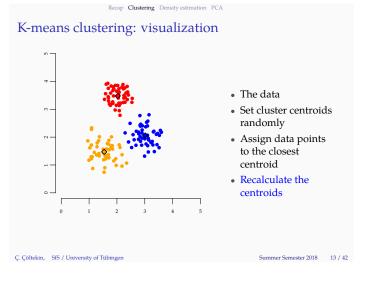
- The data
- Set cluster centroids randomly
- Assign data points to the closest centroid
- Recalculate the centroids

C. Cöltekin. SfS / University of Tübineen Summer Semester 201

Ç. Çöltekin, SfS / University of Tübingen Summer Semes







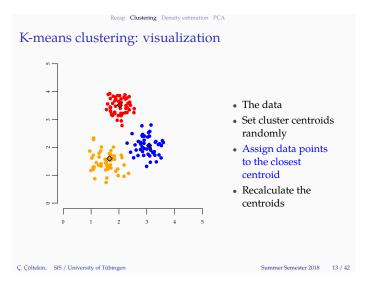
How many clusters?

C. Cöltekin. SfS / University of Tübingen

- The number of clusters is defined for some problems, e.g., classifying news into a fixed set of topics/interests
- For others, there is no clear way to select the best number of clusters
- The error (within cluster scatter) always decreases with increasing number of clusters, using a test set or cross validation is not useful either
- A common approach is clustering for multiple K values, and picking where there is an 'elbow' in the graph against the error function

K-means clustering: visualization • The data • Set cluster centroids randomly Assign data points to the closest centroid Recalculate the centroids

Recap Clustering Density estimation PCA



K-means: some issues

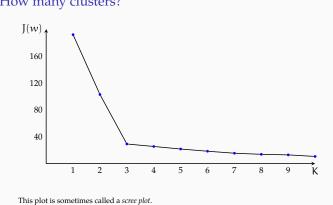
Ç. Çöltekin, SfS / University of Tübingen

• K-means requires the data to be in an Euclidean space

Recap Clustering Density estimation PCA

- K-means is sensitive to outliers
- The results are sensitive to initialization
 - There are some smarter ways to select initial points
 - One can do multiple initializations, and pick the best (with lowest within-group squares)
- It works well with approximately equal-size round-shaped
- We need to specify number of clusters in advance

Recap Clustering Density estimation PCA How many clusters?



Ç. Çöltekin, SfS / University of Tübingen

• Instead of a flat division to clusters as in K-means,

• There are two main 'modes of operation':

• starts with a single cluster,

hierarchical clustering builds a hierarchy based on

starts with individual data points,
merges the clusters until all data is in a single cluster

• and splits until all leaves are single data points

Recap Clustering Density estimation PCA

K-medoids

- · K-medoids algorithm is an alternation of K-means
- Instead of calculating centroids, we try to find most typical data point (medoids) at each iteration
- K-medoids can work with distances, does not need feature vectors to be in an Euclidean space
- It is less sensitive to outliers
- It is computationally more expensive than K-means

1. Compute the

to merge

Hierarchical clustering

similarity of the data points

Bottom-up or agglomerative clustering

Top-down or divisive clustering

Agglomerative clustering

Recap Clustering Density estimation PCA

Hierarchical clustering

- · Hierarchical clustering operates on differences (or similarities)
- The result is a binary tree called dendrogram
- Dendrograms are easy to interpret (especially if data is hierarchical)
- $\bullet\,$ The algorithm does not commit to the number of clusters Kfrom the start, the dendrogram can be 'cut' at any height for for determining the clusters

Ç. Çöltekin, SfS / University of Tübing

- Pick two clusters that

its own cluster

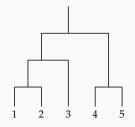
are most similar to each other

similarity/distance matrix

2. Assign each data point to

3. Repeat until no clusters left

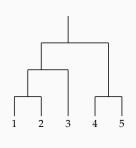
Merge them into a single cluster

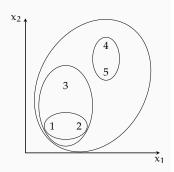


Ç. Çöltekin, SfS / University of Tübin

Recap Clustering Density estimation PCA

Agglomerative clustering demonstration





Recap Clustering Density estimation PCA

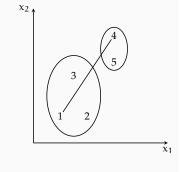
How to calculate between cluster distances

Complete maximal

inter-cluster distance Single minimal

inter-cluster distance Average mean inter-cluster distance

Centroid distance between the centroids



Recap Clustering Density estimation PCA

How to calculate between cluster distances

Recap Clustering Density estimation PCA

Complete maximal

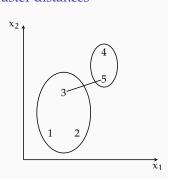
inter-cluster distance

Single minimal

inter-cluster distance

Average mean inter-cluster distance

Centroid distance between the centroids



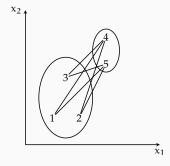
How to calculate between cluster distances

Complete maximal inter-cluster distance

> Single minimal inter-cluster distance

Average mean inter-cluster distance

Centroid distance between the centroids



C. Cöltekin. SfS / University of Tübinger

Ç. Çöltekin, SfS / University of Tübingen

Recap Clustering Density estimation PCA

Evaluating clustering results is often non-trivial

e.g., V-measure, B³ed F-score

• Internal evaluation is based a metric that aims to indicate

'good clustering': e.g., Dunn index, gap statistic, silhouette

• External metrics can be useful if we have labeled *test* data:

word-clusters evaluated based on their effect on parsing

• Human judgments, manual evaluation - 'looks good to me'

• The results can be tested on the target application: e.g.,

Recap Clustering Density estimation PCA

Cluster 1

Clustering evaluation

Clustering evaluation external metrics: general intution

(homogeniety)

Ç. Çöltekin, SfS / University of Tübingen

Density estimation

• We want clusters that

contain members of a single gold-standard class

• We want all members of a

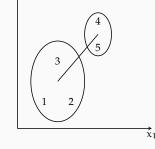
class to be in a single cluster (completeness)

Complete maximal inter-cluster distance

Single minimal inter-cluster distance

Average mean inter-cluster distance

Centroid distance between the centroids



Note: we only need distances, (feature) vectors are not necessary

Cluster 2

Cluster 3

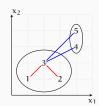
Clustering evaluation

internal metric example: silhouette

$$s_{\mathfrak{i}} = \frac{b(\mathfrak{i}) - a(\mathfrak{i})}{\max(a(\mathfrak{i}), b(\mathfrak{i}))}$$

where

- a(i) average distance between object i and and objects in the same
- b(i) average distance between object i and and objects in the closest cluster



Ç. Çöltekin, SfS / University of Tübinger

Recap Clustering Density estimation PCA

• K-means treats all data points in a cluster equally A 'soft' version of K-means is density estimation for

- We assume the data comes from a mixture of K Gaussian

• Unlike K-means, mixture of Gaussians assigns probabilities

for each data point belonging to one of the clusters

expectation-maximization (EM) algorithm

We try to find the parameters of each distribution (instead of centroids) that maximizes the likelihood of the data

Note the similarity with precision and recall.

Recap Clustering Density estimation PCA

Clustering: some closing notes

- We do not have proper evaluation procedures for clustering results (for unsupervised learning in general)
- · Clustering is typically unstable, slight changes in the data or parameter choices may change the results drastically
- Approaches against instability include some validation methods, or producing 'probabilistic' dendrograms by running clustering with different options

Summer Semester 2018 26 / 42

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 29 / 42

Density estimation using the EM algorithm

Recap Clustering Density estimation PCA

- The EM algorithm (or its variations) is used in learning models with latent/hidden variables
- · It is closely related to the K-means algorithm
- $1. \ \ Initialize the parameters (e.g., randomly) of K multivariate$ normal distributions (μ, Σ)
- 2. Iterate until convergence:
- $\hbox{E-step \ Given the parameters, compute the membership 'weights',}\\$ the probability of each data point belonging to each distribution
- M-step Re-estimate the mixture density parameters using the calculated membership weights in the E-step

Recap Clustering Density estimation PCA

• It is typically estimated using the

Gaussian mixtures, where

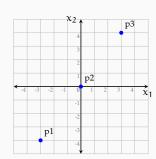
distributions

Principal component Analysis

- · Principal component analysis (PCA) is a method of dimensionality reduction
- PCA maps the original data into a lower dimensional space by a linear transformation (rotation)
- The transformed lower-dimensional variables retain most of the variation (=information) in the input
- PCA can be used for
 - visualization
 - data compression
 - reducing dimensionality of features for other machine learning methods
 - eliminating noise

Ç. Çöltekin, SfS / University of Tübingen C. Cöltekin. SfS / University of Tübingen

PCA: a toy example



- How many dimensions do we have?
- · How many dimensions do we need?
- · Short divergence: calculate the covariance matrix

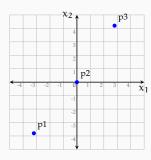
$$\Sigma = \begin{bmatrix} \frac{18}{3} & 8 \\ 8 & \frac{32}{3} \end{bmatrix}$$

What is the correlation between x_1 and x_2 ?

C. Cöltekin, SfS / University of Tübingen

Recap Clustering Density estimation PCA

PCA: A toy example (3)



- What if the variables were not perfectly but strongly correlated?
- We could still do a similar transformation:

 Discarding z₂ results in a small reconstruction error:

$$p1 = A \times \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$$

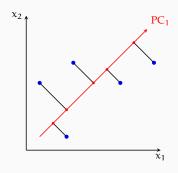
• Note: z_1 (also z_2) is a linear combination of original variables

Ç. Çöltekin, SfS / University of Tübing

Summer Semester 2018 32 / 42

Recap Clustering Density estimation PCA

Different views on PCA



- Find the direction of the largest variance
- Find the projection with the least reconstruction
- Find a lower dimensional latent Gaussian variable such that the observed variable is a mapping of the latent variable to a higher dimensional space (with added noise)

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 34 / 42

Recap Clustering Density estimation PCA

PCA as matrix factorization (eigenvalue decomposition)

• One can compute PCA by decomposing the covariance matrix as (note $\Sigma = X^T X$)

$$\pmb{\Sigma} = \pmb{u} \pmb{\wedge} \pmb{u}^\mathsf{T}$$

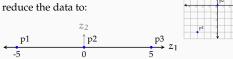
- the columns of ${f U}$ are the principal components (eigenvectors)
- $-\Lambda$ is a diagonal matrix of eigenvalues
- Another option is SVD, which factorizes the input vector (k variables \times n data points) as

$$X = UDV^*$$

- $-~U~(k\times k)$ contains the eigenvectors as before, $-~D~(k\times n)$ diagonal matrix $D^2=\Lambda$
- \mathbf{V}^* is a $n \times n$ unitary matrix $^{\circ}$ The above is correct for standardized variables, otherwise the formulas get slightly more complicated.

Ç. Çöltekin, SfS / University of Tübingen

PCA: A toy example (2) What if we reduce the data to:



Going back to the original coordinates is easy, rotate using:

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$$

$$\mathfrak{p}1 = A \times \begin{bmatrix} -5 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ -4 \end{bmatrix} \quad \mathfrak{p}1 = A \times \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \mathfrak{p}1 = A \times \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

We can recover the original points perfectly. In this example the inherent dimensionality of the data is only 1.

Ç. Çöltekin, SfS / University of Tübingen

Recap Clustering Density estimation PCA

Why do we want to reduce the dimensionality

- · Visualizing high-dimensional data becomes possible
- If we use the data for other ML methods,
 - we reduce the computation time
 - we may avoid 'the curse of dimensionality'
- Decorrelation is useful in some applications
- We compress the data (in a lossy way)
- We eliminate noise (assuming a high signal to noise ratio)

Ç. Çöltekin, SfS / University of Tübingen

Recap Clustering Density estimation PCA

How to find PCs

- When viewed as maximizing variance or reducing the reconstruction error, we can write the appropriate objective function and find the vectors that minimize it
- In latent variable interpretation, we can use EM as in estimating mixtures of Gaussians
- The principle components are the eigenvectors of the correlation matrix, where large eigenvalues correspond to components with large variation
- · A numerically stable way to obtain principal components is doing singular value decomposition (SVD) on the input data

Ç. Çöltekin, SfS / University of Tübingen

Recap Clustering Density estimation PCA

A practical example

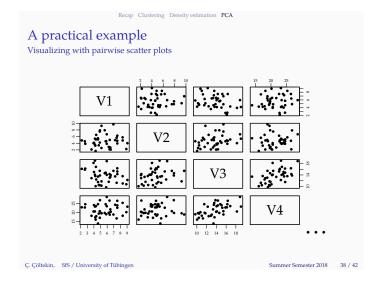
(with simplified/fake data)

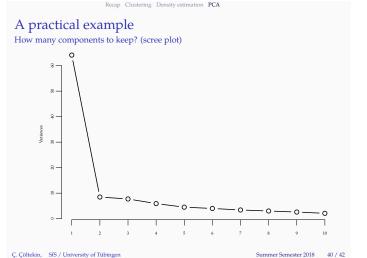
· Our data consists of 'measurements' from speech signal of instances of two vowels, we have 12 measurements for each vowel instance

5.19	4.33	14.76	30.08	14.73	7.06 11.04	15.56	24.46	8.51	
2.99	5.25	11.69	19.27	18.02	11.04	13.34	38.13	8.70	
6.25	6.05	13.88	19.26	17.81	6.95	12.58	39.74	9.58	
7.24	5.43	15.15	18.93	15.69	10.18	14.89	34.86	10.03	
6.07	6.27	13.34	17.60	19.98	6.95 10.18 11.04	13.28	36.02	8.66	

- How do we visualize this data?
- Are all 12 variables useful?

C. Cöltekin. SfS / University of Tübingen





Recap Clustering Density estimation PCA

Summary

- In unsupervised learning, we do not have labels. Our aim is to find/exploit (latent) structure in the data
- Unsupervised methods try to discover 'hidden' structure in the data

Clustering finds groups in the data Density estimation estimates parameters of latent probability distributions

Dimensionality reduction transforms the data in a low dimensional space while keeping most of the information in the original data

Next:

Mon Artificial neural networks (ANNs)

Wed Deadline for assignment 3, assignment 4 will be out

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 42 /

Derivation of PCA by maximizing the variance (cont.)

The problem becomes maximize

$$z_1^\mathsf{T} \Sigma z$$

with the constraint $||z_1|| = z_1^T z_1 = 1$

• Turning it into a unconstrained optimization problem with Lagrange multipliers, we minimize

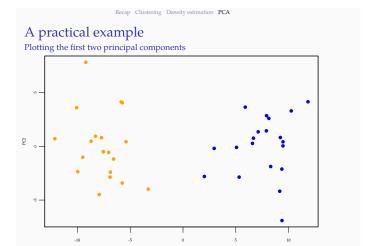
$$z_1^\mathsf{T} \Sigma z + \lambda_1 (1 - z_1^\mathsf{T} z_1)$$

• Taking the derivative and setting it to 0 gives us

$$\Sigma z_1 = \lambda_1 z_1$$

Note: by definition, z_1 is an eigenvector of $\Sigma,$ and λ_1 is the corresponding eigenvalue

 z₁ is the first principal component, we can now compute the second principal component with the constraint that it has to be orthogonal to the first one



ecap Clustering Density estimation PCA

Some practical notes on PCA

- Variables need to be centered
- Scales of the variables matter, standardizing may be a good idea depending on the units/scales of the individual
- The sign/direction of the principal component (vector) is not important
- If there are more variables than the data points, we can still calculate the principal components, but there will be at most $n-1\ PCs$
- PCA will be successful if variables are correlated, there are extensions for dealing with nonlinearities (e.g., kernel PCA, ICA, t-SNE)

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 41 / 4

Derivation of PCA by maximizing the variance

- We focus on the first PC (z_1) , which maximizes the variance of the data onto itself
- We are interested only on the direction, so we choose z_1 to be a unit vector ($||z_1|| = 1$)
- Remember that to project a vector onto another, we simply use dot product, So the projected data points are zx_i for $i=1,\ldots,N$.
- The variance of the projected data points (that we want to maximize) is,

$$\sigma_{z_1} = \frac{1}{N} \sum_{i}^{N} (z_1 x_i - z_1 \bar{x}_i)^2 = z_1^T \Sigma z$$

where Σ_x is the covariance matrix of the unprojected data

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018