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The Kullback-Leibler divergence of two distributions P and Q,
DKL(P ‖ Q), is always larger than the entropy of P, H(P).
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The Kullback-Leibler divergence of two distributions P and Q,
DKL(P ‖ Q), is always larger than the entropy of P, H(P).

False
DKL(P ‖ Q) = H(P,Q)− H(P)

Entropy H(P):
How costly is it to encode data from this distribution?

Cross entropy H(P,Q):
entropy of (the true distribution) P under (its approximation) Q

KL divergence DKL(P ‖ Q):
How much more costly is it to encode data from P using Q?



10
The Kullback-Leibler divergence of two distributions P and Q,
DKL(P ‖ Q), is always larger than the entropy of P, H(P).

False

DKL(P ‖ Q) = H(P,Q)− H(P)

H(P) = −
∑
x

P(x)logP(x)

H(P,Q) = −
∑
x

P(x)logQ(x)

Example: P(x = A) = 0.5 Q(x = A) = 0.4
P(x = B) = 0.5 Q(x = B) = 0.6

H(P) = −(0.5× log20.5 + 0.5× log20.5) = 1

H(P,Q) = −(0.5× log20.4 + 0.5× log20.6)

= −(0.5 ∗ −1.32 + 0.5 ∗ −0.74) = 1.03

DKL(P ‖ Q) = 1.03− 1 = 0.03



11
A regularized estimation of a machine learning model reduces the
model’s fit to the training data.

True
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12
If a machine learning model has a convex loss function, one can
calculate the minimum loss analytically.

False

I analytic solutions are possible for some convex loss functions
(e.g. least squares regression)

I ...but not all

I but search procedures (e.g. gradient descent) can find the
minimum
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13
No correlation with the outcome variable is a desired property of
the predictors for a statistical model.

False

Correlation with the outcome variable is exactly what we want!
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14
The perceptron algorithm adjusts the weights after every correctly
classified training sample.

False

While training the model, if an instance is...

I classified correctly, nothing happens.

I misclassified, the weights are updated.
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15
The gradient of a multivariate function is the 0 vector only at the
global minimum of the function.

False
The gradient is 0 at any global or local minimum, of which there
can be many:
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16
Multiplying a matrix with its eigenvector does not change the
direction of the vector.

True

matrix A with an eigenvector-eigenvalue pair v and λ:

Av = λv

same direction, different size
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17
A machine learning system with high recall is likely to produce few
false positives.

False

true value
pos. neg.

prediction
pos. TP FP
neg. FN TN

recall =
TP

TP + FN
precision =

TP

TP + FP

Example: 1000 documents, of which 3 are relevant

If a system returns all documents: FP = 9997

recall =
3

3 + 0
= 100% precision =

3

3 + 9997
= 0.3%
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18
The L2 norm of a vector in Rn (for any n in range (1,∞)) is
always smaller than or equal to its L1 norm.

True

‖v‖1 =
n∑

i=1

|vi | ‖v‖2 =

√√√√ n∑
i=1

|vi |2
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19
If the mutual information between two random variables x and y is
MI (X ,Y ) = 0, the conditional entropy is H(Y |X ) = H(Y ).

True

MI (X ,Y ) = 0 when X and Y are independent
(P(X ,Y ) = P(X )P(Y )).

When X and Y are independent, knowing about X doesn’t give us
any information about X :
H(Y |X ) = H(Y ) (and vice versa).
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20
L1 regularization results in sparse parameter estimates.

True

Minimizing

J(w) + λ
k∑

j=1

|wj |

tends to result in a model where the less important features’
coefficients are 0.
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21
Increasing model complexity (e.g., number of parameters) in a
machine learning model is likely to decrease test error.

False

Overfitting to training data
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Appendix



Entropy, Cross Entropy, KL Divergence
Entropy: How costly is it to encode data from this distribution?

H(P) =
∑
x

P(x)log
1

P(x)

= −
∑
x

P(x)logP(x)
(1)

Cross entropy:
entropy of (the true distribution) P under (its approximation) Q

H(P,Q) = −
∑
x

P(x)logQ(x) (2)

KL divergence:
How much more costly is it to encode data from P using Q?

DKL(P ‖ Q) =
∑
x

P(x)log
P(x)

Q(x)

= H(P,Q)− H(P)

(3)
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