Statistical Natural Language Processing

Python Refresher |: Exercises

Verena Blaschkel

April 20, 2018

!Based on slides by Kuan Yu.



Exercises

The 36 part-of-speech tags used in the Penn Treebank Project:?

penn_pos_tags = "CC CD DT EX FW IN JJ JJR JJS " \
"LS MD NN NNS NNP NNPS PDT POS PRP " \
"PRP$ RB RBR RBS RP SYM TO UH VB " \
"VBD VBG VBN VBP VBZ WDT WP WP$ WRB"

2You can find an overview with short descriptions at
www.ling.upenn.edu/courses/Fall_2003/1ing001/penn_treebank_pos.html


www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Exercises

1) idx2tag

Create a list named idx2tag with the tags in penn_pos_tags,
such that:

assert 36 == len(idx2tag)
assert 'TO' == idx2tag[24]
assert 24 == idx2tag.index('TO0')

2) tag2idx
Create a dictionary named tag2idx which inverses idx2tag,
such that:

assert all(idx == tag2idx[tag]
for idx, tag in enumerate(idx2tag))




Exercises

3) sent

The string sent contains the POS tags corresponding to the words
in some sentence.

sent = "DT NN PRP MD VBG VBZ RB DT JJ NN , " \
"CC PRP MD VB DT NN VBN IN NN ."

Use tag2idx to create the list sent_int that encodes sent as a
list of integers.

Beware that sent may contain some tags not found in
penn_pos_tags, in which case you should update idx2tag and
tag2idx. It should afterwards still be the case that

assert all(idx == tag2idx[tag]
for idx, tag in enumerate(idx2tag))




Exercises

4) one-hot encoding

One-hot encoding describes a sequence of bits, all of which are 0
except for a single one that is 1.
Write the body of the function one_hot:

def one_hot(idx, dim):

nimnn

Creates a one-hot wector.

Arguments:
tdz: An int giving the position of the “1°.
dim: An int describing the length of the list.

Returns:
A list(int) that is a one—hot wector.

nnn




Exercises

5) matrix

Create a nested list matrix that encodes the sentence as a list of
one-hot arrays. That is, it should be like sent_int, but each
integer is replaced with the corresponding one-hot list

It can be interpreted as a matrix with 1len(sent_int) many rows
and len(tag2idx) many columns.

assert len(matrix) == len(sent_int)
assert len(matrix[0]) == len(tag2idx)
assert matrix[0] == one_hot(tag2idx['DT'], len(tag2idx))




Exercises

6) saving and reading files
Define a function save matrix for saving two-dimensional
matrices as CSV files.

Define another function load matrix for loading matrices from
CSV files created with the first function.

path = 'matrix.csv'
assert matrix == load_matrix(save_matrix(matrix, path))




