
Statistical Natural Language Processing
Artificial Neural networks & deep learning

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2018



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Artificial neural networks

• Artificial neural networks (ANNs) are machine learning
models inspired by biological neural networks

• ANNs are powerful non-linear models
• Power comes with a price: there are no guarantees of

finding a global minimum of the error function
• ANNs have been used in ML, AI, Cognitive science since

1950’s – with some ups and downs
• Currently they are the driving force behind the popular

‘deep learning’ methods

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 1 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

The biological neuron
(showing a picture of a real neuron is mandatory in every ANN lecture)

Dendrite

Soma

Axon

Axon terminall

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 2 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Artificial and biological neural networks

• ANNs are inspired by biological neural networks
• Similar to biological networks, ANNs are made of many

simple processing units
• Despite the similarities, there are many differences: ANNs

do not mimic biological networks
• ANNs are a practical statistical machine learning methods

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 3 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recap: the perceptron

y = f

 m∑
j

wjxj


where

f(x) =

{
+1 if wx > 0

−1 otherwise

In ANN-speak f(·) is called an
activation function.

x2

x1

...

xm

w
1

w2

wm

y

x0 = 1

w
0

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 4 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recap: the perceptron

y = f

 m∑
j

wjxj


where

f(x) =

{
+1 if wx > 0

−1 otherwise

In ANN-speak f(·) is called an
activation function.

x2

x1

...

xm

w
1

w2

wm

y

x0 = 1

w
0

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 4 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recap: perceptron algorithm

w

• Perceptron algorithm
minimizes the function

J(w) =
∑
i

max(0,−wxiyi)

• The online version picks
an misclassified example,
and sets

w← w+ xiyi

• Algorithm is guaranteed to
converge if classes are
linearly separable

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 5 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recap: logistic regression

P(y) = f

 m∑
j

wjxj


where

f(x) =
1

1+ e−wx

x2

x1

...

xm

w
1

w2

wm

P(y)

x0 = 1

w
0

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 6 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recap: logistic regression

P(y) = f

 m∑
j

wjxj


where

f(x) =
1

1+ e−wx

x2

x1

...

xm

w
1

w2

wm

P(y)

x0 = 1

w
0

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 6 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Logistic regression is also a linear classifier

0 1 2 3 4 5

0
1

2
3

4
5

x1

x
2

0.1
−
2.5

3x1
+
2.5

8x2
=
0

p = 1

1+e−(0.1−2.53x1+2.58x2)

Note: the decision boundary is wx = 0

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 7 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Linear separability

• A classification problem is
said to be linearly separable
if one can find a linear
discriminator

• A well-known counter
example is the logical XOR
problem

x2

x1
0 1

1

−

+

+

−

There is no line that can separate positive and negative classes.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 8 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Can a linear classifier learn the XOR problem?

• We can use non-linear basis functions

w0 +w1x1 +w2x2 +w3ϕ(x1, x2)

is still linear in w for any choice of ϕ(·)
• For example, adding the product x1x2 as an additional

feature would allow a solution like: x1 + x2 − 2x1x2

x1 x2 x1 + x2 − 2x1x2

0 0 0
0 1 1
1 0 1
1 1 0

• Choosing proper basis functions like x1x2 is called feature
engineering

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 9 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Can a linear classifier learn the XOR problem?
• We can use non-linear basis functions

w0 +w1x1 +w2x2 +w3ϕ(x1, x2)

is still linear in w for any choice of ϕ(·)
• For example, adding the product x1x2 as an additional

feature would allow a solution like: x1 + x2 − 2x1x2

x1 x2 x1 + x2 − 2x1x2

0 0 0
0 1 1
1 0 1
1 1 0

• Choosing proper basis functions like x1x2 is called feature
engineering

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 9 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Multi-layer perceptron

• The simplest modern ANN architecture is called
multi-layer perceptron (MLP)

• (MLP) is a fully connected, feed-forward network consisting of
perceptron-like units

• Unlike perceptron, the units in an MLP use a continuous
activation function

• The MLP can be trained using gradient-based methods
• The MLP can represent many interesting machine learning

problems
– It can be used for both regression and classification

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 10 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Multi-layer perceptron
the picture

x1

x2

x3

x4

yyy

Input Hidden Output

Each unit takes a weighted sum of their input,
and applies a (non-linear) activation function.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 11 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

An artificial neuron

∑
f(·)x2

x1

...

xm

w
1

w2

wm

y

x0 = 1

w
0

• The unit calculates a
weighted sum of the inputs

m∑
j

wjxj = wx

• Result is a linear
transformation

• Then the unit applies a
non-linear activation
function f(·)

• Output of the unit is

y = f(wx)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 12 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Artificial neuron
an example

∑
x2

x1

...

xm

w
1

w2

wm

y

x0 = 1

w
0

• A common activation
function is logistic sigmoid
function

f(x) =
1

1+ e−x

• The output of the network
becomes

y =
1

1+ e−wx

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 13 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Activation functions in ANNs
hidden units

• The activation functions in MLP are typically continuous
(differentiable) functions

• For hidden units common choices are

Sigmoid (logistic) 1
1+ex

Hyperbolic tangent (tanh) e2x−1
e2x+1

Rectified linear unit (relu) max(0, x)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 14 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Activation functions in ANNs
output units

• The activation functions of the output units depends on
the task

– For regression, identity function
– For binary classification, logistic sigmoid

P(y = 1 | x) =
1

1+ e−wx
=

ewx

1+ e−wx

– For multi-class classification, softmax

P(y = k | x) =
ewkx∑
j e

wjx

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 15 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

MLP: a simple example

x1

x2

h1

h2

y1

y2

f() g()

w
(1)
11

w (1)12

w
(1
)

21

w
(1)
22

w
(2)
11

w
(2
)

21

w (2)12

w
(2)
22

hj = f

(∑
i

wijxi

)

yk = g

∑
j

wjkhj



yk = g

∑
j

wjkf

(∑
i

wijxi

)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 16 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

MLP: a simple example

x1

x2

h1

h2

y1

y2

f() g()

w
(1)
11

w (1)12

w
(1
)

21

w
(1)
22

w
(2)
11

w
(2
)

21

w (2)12

w
(2)
22

• Alternatively, we can write
the computations in matrix
form

h = f(W(1)x)

y = g(W(2)h)

= g
(
W(2)f(W(1)x)

)
• This corresponds to a

series of transformations
followed by element-wise
(non-linear) function
applications

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 17 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Solving non-linear problems with ANNs
a solution to XOR problem

x1 h1

y

x2 h2

f(z) = z2

g(z) = 1
1+e−z

1 1

w
(1
)

0
1

w
(1
)

02

w
(2
)

0
1

w
(1)
11

w (1)12

w
(1
)

21

w
(1)
22

w (2)
11

w
(2)

21

x2

x1

h2

h1

Is this different from non-linear basis functions?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 18 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Solving non-linear problems with ANNs
a solution to XOR problem

0 4

0.27

0 0

f(z) = z2

g(z) = 1
1+e−z

1 1

−
2

0

3

1

1

1

1

−1

−1

x2

x1

h2

h1

Is this different from non-linear basis functions?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 18 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Solving non-linear problems with ANNs
a solution to XOR problem

0 1

0.73

1 1

f(z) = z2

g(z) = 1
1+e−z

1 1

−
2

0

3

1

1

1

1

−1

−1

x2

x1

h2

h1

Is this different from non-linear basis functions?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 18 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Solving non-linear problems with ANNs
a solution to XOR problem

1 1

0.73

0 1

f(z) = z2

g(z) = 1
1+e−z

1 1

−
2

0

3

1

1

1

1

−1

−1

x2

x1

h2

h1

Is this different from non-linear basis functions?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 18 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Solving non-linear problems with ANNs
a solution to XOR problem

1 0

0.27

1 4

f(z) = z2

g(z) = 1
1+e−z

1 1

−
2

0

3

1

1

1

1

−1

−1

x2

x1

h2

h1

Is this different from non-linear basis functions?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 18 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Non-linear activation functions are necessary

Without non-linear activation functions, an ANN with any
number of layers is equivalent to a linear model.

x1 h1

y

x2 h2

a

b

c

d

e

f

h1 = ax1 + cx2

h2 = bx1 + dx2

y = eh1 + fh2

= (ea+ fb)x1 + (ec+ fd)x2

y is still a linear function of xi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 19 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Where do non-linearities come from?
non-linearities are abundant in nature, it is not only the XOR problem

In a linear model, y = w0 +w1x1 + . . .+wkxk

• The outcome is linearly-related to the predictors
• The effects of the inputs are additive

This is not always the case:
• Some predictors affect the outcome in a non-linear way

– The effect may be strong or positive only in a certain range
of the variable (e.g., reaction time change by age)

– Some effects are periodic (e.g., many measures of time)

• Some predictors interact
‘not bad’ is not ‘not’ + ‘bad’ (e.g., for sentiment analysis)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 20 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Finding the minimum of a loss function

• Derivative of a function points to
the largest direction of change

• Derivative is 0 at
minima/maxima

• To find the minimum (or
maximum) of error function f(x),
we solve f ′(x) = 0, for x

• If no analytic solution exist, we
search for the minimum
iteratively

• −f ′(x) for any x points towards
the minimum

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 21 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Gradient descent: a refresher

• The general idea is to approach a minimum of the error
function in small steps

w← w− η∇J(w)

– ∇J is the gradient of the loss function, it points to the
direction of the maximum increase

– η is the learning rate
• The updates can be performed
batch for the complete training set

on-line after every training instance
– this is known as stochastic gradient descent (SGD)

mini-batch after small fixed-sized batches

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 22 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Gradient descent: the picture

X

∇f(x1, . . . , xn) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 23 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Global and local minima

w

E
(w

)

local minimum

global minimum

A function is convex if there is only one (global) minimum.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 24 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Error functions in ANN training
depend on the task

• If we assume Gaussian noise, a natural choice is the
minimizing the sum of squared error

E(w) =
∑
i

(yi − ŷi)
2

• For binary classification, we use cross entropy

E(w) = −
∑
i

yi log ŷi + (1− yi) log(1− ŷi)

• Similarly, for multi-class classification, also cross entropy

E(w) = −
∑
i

∑
k

yi,k log ŷk

In practice, the ANN loss functions will not be convex.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 25 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Learning in ANNs

• ANNs implement complex functions: we need to use
optimization methods (e.g., gradient descent) to train them

• Typically error functions for ANNs are not convex,
gradient descent will find a local minimum

• Optimization requires updating multiple layers of weights
• Assigning credit (or blame) to each weight during learning

is not trivial
• An effective solution to the last problem is the

backpropagation algorithm

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 26 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Learning in multi-layer networks: the problem

x1

x2

h1

h2

E(y) = ?

y1

y2

E(y) = (y− ŷ)2

f() g()

w
(1)
11

w (1)12

w
(1
)

21

w
(1)
22

w
(2)
11

w
(2
)

21

w (2)12

w
(2)
22

We want a way to update non-final weights based on final error.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 27 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Backpropagation
• The final output of the network is computed by calculating

the output of each layer and passing it to the next (forward
propagation)

• Weight updates on the final layer is easy: we need the
relevant component of the gradient:

∆wij = η
∂E

∂wij

• For the non-final weights we make use of chain rule of
derivatives

if F(w) = f(g(w)), F ′(x) = f ′(g(w))g ′(w)

• Backpropagation propagates the error from output units to
the input weights using the chain rule of derivatives

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 28 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Backpropagation: visualization

x1 h1 y1

x2 h2 y2

W(1) W(2)

1 1

• Updating weights W(2) is
easy: we can use gradient
descent directly

• We update weights W(1)

using the chain rule
• Backpropagation

algorithm uses dynamic
programming to do this
efficiently

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 29 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Backpropagation: visualization

x1 h1 y1

x2 h2 y2

W(1) W(2)

1 1

• Updating weights W(2) is
easy: we can use gradient
descent directly

• We update weights W(1)

using the chain rule

• Backpropagation
algorithm uses dynamic
programming to do this
efficiently

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 29 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Backpropagation: visualization

x1 h1 y1

x2 h2 y2

W(1) W(2)

1 1

• Updating weights W(2) is
easy: we can use gradient
descent directly

• We update weights W(1)

using the chain rule
• Backpropagation

algorithm uses dynamic
programming to do this
efficiently

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 29 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Regularization in neural networks

• As in linear models, we can use L1 and L2 regularization
by adding a regularization term to the error function
(known as weight decay). For example,

J(w) = E(w) + ∥W∥

• There are other ways to fight overfitting
– With early stopping, one stops the training before it reaches

to the smallest training error
– With dropout, random units (with all of their connections)

are dropped during training
– Injecting noise at the output, as a way to (implicitly) model

the noise in the target classes/values

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 30 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Adapting learning rate

• The choice of learning rate η is important
too small slow convergence

too big overshooting - may fluctuate around the minimum,
or even jump away

• The idea is to adapt the learning rate during learning
• A common trick is adding a momentum:

if we move in the same direction a long time accelerate

∆wij(t) = η
∂E

∂wij

+ α∆wij(t− 1)

• There are many adaptive optimization algorithms:
Adagrad, Adadelta, RMSprop, Adam, …

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 31 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

How many layers, units

• A network with single hidden layer is said to be a universal
approximator: it can approximate any continuous function
with arbitrary precision

• However, in practice multiple interconnected layers are
useful and commonly used in modern ANN models

• The choice of layers, in general the architecture of the
system, depends on the application

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 32 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

A bit of history

1950-60 ANNs (perceptron) became popular:
lots of excitement in AI, cognitive science

1970s Not much interest
– criticism on perceptron: linear separability

1980s ANNs became popular again
– backpropagation algorithm
– multi-layer networks

1990s ANNs had again fallen ‘out of fashion’
– Engineering: other algorithms (such as SVMs) performed

generally better
– From the cognitive science perspective: ANNs are difficult

to interpret

present ANNs (again) enjoy a renewed popularity with the name
‘deep learning’

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 33 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Summary, so far…

• ANNs are non-linear machine learning methods
• they can be used for both regression and classification
• they are trained with backpropagation algorithm
• ANN loss functions are not convex, what we find is a local

minimum

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 34 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Deep feed-forward networks

x1 xm
…

• Deep neural networks (>2 hidden
layers) have recently been
successful in many tasks

• They are particularly useful in
problems where
layers/hierarchies of features are
useful

• They often use sparse
connectivity and shared weights

• We will review two important
architectures: CNNs and RNNs

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 35 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Training deep networks
difficulties

• Training deep networks is more difficult
• A common practical problem is unstable gradients:

the gradients may vanish, or explode
• Often we have lots of hyper parameters:

– the number of layers
– For each layer:

• what architecture to use (dense, CNN, RNN, …)
• activation function(s)
• regularization method / parameters
• optimization algorithm
• initialization
• …

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 36 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Why now?

• Increased computational power, especially advances in
graphical processing unit (GPU) hardware

• Availability of large amounts of data
– mainly unlabeled data (more on this later)
– but also labeled data through ‘crowd sourcing’ and other

sources

• Some new developments in theory and applications

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 37 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolutional networks

• Convolutional networks are particularly popular in image
processing applications

• They have also been used with success some NLP tasks
• Unlike feed-forward networks we have discussed so far,

– CNNs are not fully connected
– The hidden layer(s) receive input from only a set of

neighboring units
– Some weights are shared

• A CNN learns features that are location invariant
• CNNs are also computationally less expensive compared

to fully connected networks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 38 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in image processing
• Convolution is a common operation in image processing

for effects like edge detection, blurring, sharpening, …
• The idea is to transform each pixel with a function of the

local neighborhood

Input (X) Filter (W) Output (Y)

y =
∑
i

wixi

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Example convolutions

• Blurring

1

16

1 2 1

2 4 2

1 2 1


• Edge detection −1 −1 −1

−1 8 −1

−1 −1 −1



Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 40 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Learning convolutions

• Some filters produce features that are useful for
classification (e.g., of images, or sentences)

• In machine learning we want to learn the convolutions
• Typically, we learn multiple convolutions, each resulting in

a different feature map
• Repeated application of convolutions allow learning

higher level features
• The last layer is typically a standard fully-connected

classifier

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 41 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolution in neural networks

x1 x2

h2

x3

h3

x4

h4

x5

w
-1 w

0

w
1

w
1

w
0

w
-1

w
1

w
0

w
1

• Each hidden layer corresponds to a local window in the
input

• Weights are shared: each convolution detects the same
type of features

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 42 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Pooling

x1

h1

x2

h2

h
′
1

x3

h3

h
′
2

x4

h4

h
′
3

x5

h5

C
on

vo
lu

tio
n

Po
ol

in
g

• Convolution is combined with pooling
• Pooling ‘layer’ simply calculates a statistic (e.g., max) over

the convolution layer
• Location invariance comes from pooling

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 43 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Pooling and location invariance

1 3 2 5 2

3 5 5

Convolution

Max pooling

• Note that the numbers at the pooling layer are stable in
comparison to the convolution layer

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 44 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Pooling and location invariance

2 1 3 2 5

3 3 5

Convolution

Max pooling

• Note that the numbers at the pooling layer are stable in
comparison to the convolution layer

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 44 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Pooling and location invariance

4 2 1 3 2

4 3 3

Convolution

Max pooling

• Note that the numbers at the pooling layer are stable in
comparison to the convolution layer

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 44 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Padding in CNNs

• With successive layers
of convolution and
pooling, the size of the
later layers shrinks

• One way to avoid this is
padding the input and
hidden layers with
enough number of
zeros

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 45 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Padding in CNNs

• With successive layers
of convolution and
pooling, the size of the
later layers shrinks

• One way to avoid this is
padding the input and
hidden layers with
enough number of
zeros

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 45 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

CNNs: the bigger picture

• At each convolution/pooling
step, we often want to learn
multiple feature maps

• After a (long) chain of
hierarchical features maps, the
final layer is typically a
fully-connected layer (e.g.,
softmax for classification) Convolution

Pooling

...

Fully connected

classifier output

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 46 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Real-world examples are complex

in
p
u
t

C
o
n
v

7
x
7
+
2
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

L
o
ca
lR
e
sp
N
o
rm

C
o
n
v

1
x
1
+
1
(V
)

C
o
n
v

3
x
3
+
1
(S
)

L
o
ca
lR
e
sp
N
o
rm

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

5
x
5
+
3
(V
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
2
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

M
a
x
P
o
o
l

3
x
3
+
1
(S
)

D
e
p
th
C
o
n
ca
t

C
o
n
v

3
x
3
+
1
(S
)

C
o
n
v

5
x
5
+
1
(S
)

C
o
n
v

1
x
1
+
1
(S
)

A
v
e
ra
g
e
P
o
o
l

7
x
7
+
1
(V
)

F
C

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
0

C
o
n
v

1
x
1
+
1
(S
)

F
C

F
C

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
1

S
o
ftm

a
x
A
ctiv

a
tio

n

so
ftm

a
x
2

The real-world ANNs tend to be complex

• Many layers (sometimes with repetition)
• Large amount of branching

* Diagram describes an image classification network, GoogLeNet (Szegedy et al. 2014).

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 47 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

CNNs in natural language processing

• The use of CNNs in image applications is clear:
– the first convolutional layer learns local features, e.g., edges

– successive layers learn more complex features that are
combinations of these features

• In NLP, it is a bit less straight-forward
– CNNs are typically used in combination with word vectors
– The convolutions of different sizes correspond to (word)

n-grams of different sizes
– With pooling, CNNs produce summaries of documents or

sentences similar to BoW approach

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 48 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

An example: sentiment analysis

not really worth seeingInput

Word vectors

Convolution

Feature maps

Pooling

Features

Classifier

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 49 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Convolutional networks: summary

• Convolutional networks use sparse connectivity with
weight sharing

• The resulting network is computationally more efficient
(compared to fully-connected networks)

• They are suitable for inputs with local features with (some)
location invariance

• CNNs are very popular in image classification / object
detection

• They are also used in NLP, particularly for
document/sentence classification

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 50 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recurrent neural networks

• Feed forward networks (also CNNs)
– can only learn associations
– they do not have memory of earlier inputs: they cannot

handle sequences

• Recurrent neural networks are ANN solution for sequence
learning

• This is achieved by recursive loops in the network

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 51 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recurrent neural networks

x1

h1

x2

h2

x3

h3

x4

h4

y

• Recurrent neural networks are similar to the standard
feed-forward networks

• They include loops that use previous output (of the hidden
layers) as well as the input

• Forward calculation is straightforward, learning becomes
somewhat tricky

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 52 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recurrent neural networks

x1

h1

x2

h2

x3

h3

x4

h4

y

• Recurrent neural networks are similar to the standard
feed-forward networks

• They include loops that use previous output (of the hidden
layers) as well as the input

• Forward calculation is straightforward, learning becomes
somewhat tricky

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 52 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Recurrent neural networks

x1

h1

x2

h2

x3

h3

x4

h4

y

• Recurrent neural networks are similar to the standard
feed-forward networks

• They include loops that use previous output (of the hidden
layers) as well as the input

• Forward calculation is straightforward, learning becomes
somewhat tricky

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 52 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

A simple version: SRNs
Elman (1990)

InputContext units

Hidden units

Output units

copy

• The network keeps
previous hidden
states (context units)

• The rest is just like a
feed-forward
network

• Training is simple,
but cannot learn
long-distance
dependencies

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 53 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier input affects the output through the recurrent

links

h1 h2 h3 h4

y

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 54 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier input affects the output through the recurrent

links

h1 h2 h3 h4

y

not

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 54 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier input affects the output through the recurrent

links

h1 h2 h3 h4

y

really

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 54 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier input affects the output through the recurrent

links

h1 h2 h3 h4

y

worth

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 54 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Processing sequences with RNNs

• RNNs process sequences one unit at a time
• The earlier input affects the output through the recurrent

links

h1 h2 h3 h4

y

seeing

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 54 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Learning in recurrent networks

x

h(1)

y(1)

W0

W1

W2

• We need to learn three sets of
weights: W0, W1 and W2

• Backpropagation in RNNs are at
first not that obvious

• The main difficulty is in
propagating the error through
the recurrent connections

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 55 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Unrolling a recurrent network
Back propagation through time (BPTT)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(0) y(1)

…
y(t−1) y(t)

Note: the weights with the same color are shared.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 56 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

RNN architectures
Many-to-many (e.g., POS tagging)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(0) y(1)

…
y(t−1) y(t)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 57 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

RNN architectures
Many-to-one (e.g., document classification)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(t)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 57 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

RNN architectures
Many-to-one with a delay (e.g., machine translation)

x(0) x(1) … x(t−1) x(t)

h(0) h(1) … h(t−1) h(t)

y(t−1) y(t)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 57 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Bidirectional RNNs

x(t−1) x(t) x(t+1)

y(t−1) y(t) y(t−1)

Forward states … …

Backward states … …

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 58 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

RNNs as language models

• RNNs can function as language models
• We can train RNNs using unlabeled data for this purpose
• During training the task of RNN is to predict the next word
• Depending on the network configuration, an RNN can

learn dependencies at a longer distance
• The resulting system can generate sequences

Recommended reading:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 59 / 72

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Unstable gradients revisited

• We noted earlier that the gradients may vanish or explode
during backpropagation in deep networks

• This is especially problematic for RNNs since the effective
dept of the network can be extremely large

• Although RNNs can theoretically learn long-distance
dependencies, this is affected by unstable gradients
problem

• The most popular solution is to use gated recurrent
networks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 60 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Gated recurrent networks

σℓ σℓ σh σℓ

×

×

× +

σh

ct−1

ht−1

ct

ht

xt

• Most modern RNN architectures are ‘gated’
• The main idea is learning a mask that controls what to

remember (or forget) from previous hidden layers
• Two popular architectures are

– Long short term memory (LSTM) networks (above)
– Gated recurrent units (GRU)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 61 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Unsupervised learning in ANNs

• Restricted Boltzmann machines (RBM)
similar to the latent variable models (e.g., Gaussian
mixtures), consider the representation learned by hidden
layers as hidden variables (h), and learn p(x,h) that
maximize the probability of the (unlabeled)data

• Autoencoders
train a constrained feed-forward network to predict its
output

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 62 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Restricted Boltzmann machines (RBMs)

x1

h1

x2

h2

x3

h3

x4

h4

W

h x

• RBMs are unsupervised latent
variable models, they learn only
from unlabeled data

• They are generative models of
the joint probability p(h, x)

• They correspond to undirected
graphical models

• No links within layers
• The aim is to learn useful

features (h)

*Biases are omitted in the diagrams and the formulas for simplicity.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 63 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Restricted Boltzmann machines (RBMs)

x1

h1

x2

h2

x3

h3

x4

h4

W

h x

• RBMs are unsupervised latent
variable models, they learn only
from unlabeled data

• They are generative models of
the joint probability p(h, x)

• They correspond to undirected
graphical models

• No links within layers
• The aim is to learn useful

features (h)

*Biases are omitted in the diagrams and the formulas for simplicity.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 63 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

The distribution defined by RBMs

x1 h1

x2 h2

x3 h3

x4 h4

W
p(h, x) =

eh
TWx

Z

This calculation is intractable (Z is difficult
to calculate).
But conditional distributions are easy to
calculate

p(h|x) =
∏
j

p(hj|x) =
1

1+ eWjx

p(x|h) =
∏
k

p(xk|h) =
1

1+ eW
T
kh

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 64 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Learning in RBMs

• We want to maximize the probability the model assigns to
the input, p(x), or equivalently minimize − log p(x)

• In general, this is computationally expensive
• Contrastive divergence algorithm is a well known algorithm

that efficiently finds an approximate solution

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 65 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Autoencoders

x1

x̂1

x2

x̂2

h1

x3

x̂3

h2

x4

x̂4

h3

x5

x̂5

• Autoencoders are standard
feed-forward networks

• The main difference is that
they are trained to predict
their input (they try to learn
the identity function)

• The aim is to learn useful
representations of input at the
hidden layer

• Typically weights are tied
(W∗ = WT )

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 66 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Autoencoders

x1

x̂1

x2

x̂2

h1

x3

x̂3

h2

x4

x̂4

h3

x5

x̂5

W

W∗

En
co

de
r

D
ec

od
er

• Autoencoders are standard
feed-forward networks

• The main difference is that
they are trained to predict
their input (they try to learn
the identity function)

• The aim is to learn useful
representations of input at the
hidden layer

• Typically weights are tied
(W∗ = WT )

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 66 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Under-complete autoencoders

x1 x̂1

x2 x̂2h1

x3 x̂3h2

x4 x̂4h3

x5 x̂5
• An autoencoder is said to be

under-complete if there are
fewer hidden units than
inputs

• The network is forced to learn
a compact representation of
the input (compress)

• An autoencoder with a single
hidden layer approximates
the PCA

• We need multiple layers for
learning non-linear features

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 67 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Over-complete autoencoders

h1

h2x1 x̂1

h3x2 x̂2

h4x3 x̂3

h5 • An autoencoder is said to be
over-complete if there are more
hidden units than inputs

• The network can normally
memorize the input perfectly

• This type of networks are
useful if trained with a
regularization term resulting
in sparse hidden units (e.g.,
L1 regularization)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 68 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Denoising autoencoders

x1

x̂1

x2

x2

x̂2

h1

x3

x̂3

h2

x4

x4

x̂4

h3

x5

x5

x̂5

0 0

x

x̃

h

x̂
• Instead of providing the exact

input, we introduce noise by
– randomly setting some

inputs to 0 (dropout)
– adding random (Gaussian)

noise

• Network is still expected to
reconstruct the original input
(without noise)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 69 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Unsupervised pre-training

• A common use case for RBMs and autoencoders are as
pre-training methods for supervised networks

• Autoencoders or RBMs are trained using unlabeled data
• The weights learned during the unsupervised learning is

used for initializing the weights of a supervised network
• This approach has been one of the reasons for success of

deep networks

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 70 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Deep unsupervised learning

• Both autoencoders and RBMs can be ‘stacked’
• Learn the weights of the first hidden layer from the data
• Freeze the weights, and using the hidden layer activations

as input, train another hidden layer, …
• This approach is called greedy layer-wise training
• In case of RBMs resulting networks are called deep belief

networks
• Deep autoencoders are called stacked autoencoders

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 71 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Summary

• ANNs are powerful non-linear learners
– based on some inspiration from biological NNs
– using many simple processing units
– built on linear models (logistic regression)

• For non-linear problems we need non-linear activation
functions, and at least one hidden layer

• Deep networks use more than one hidden layer
• Common (deep) ANN architectures include:
CNN location invariance
RNN sequence learning

Next:
Wed work on assignments

Fri N-gram language models

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 72 / 72



Preliminaries ANNs Deep ANNs CNNs RNNs Autoencoders

Summary

• ANNs are powerful non-linear learners
– based on some inspiration from biological NNs
– using many simple processing units
– built on linear models (logistic regression)

• For non-linear problems we need non-linear activation
functions, and at least one hidden layer

• Deep networks use more than one hidden layer
• Common (deep) ANN architectures include:
CNN location invariance
RNN sequence learning

Next:
Wed work on assignments

Fri N-gram language models

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 72 / 72


	Statistical Natural Language Processing
	Artificial neural networks
	The biological neuron
	Artificial and biological neural networks

	Preliminaries
	Recap: the perceptron
	Recap: the perceptron
	Recap: perceptron algorithm
	Recap: logistic regression
	Recap: logistic regression
	Logistic regression is also a linear classifier
	Linear separability
	Can a linear classifier learn the XOR problem?
	Can a linear classifier learn the XOR problem?

	ANNs
	Multi-layer perceptron
	Multi-layer perceptron
	An artificial neuron
	Artificial neuron
	Activation functions in ANNs
	Activation functions in ANNs
	MLP: a simple example
	MLP: a simple example
	Solving non-linear problems with ANNs
	Solving non-linear problems with ANNs
	Solving non-linear problems with ANNs
	Solving non-linear problems with ANNs
	Solving non-linear problems with ANNs
	Non-linear activation functions are necessary
	Where do non-linearities come from?
	Finding the minimum of a loss function
	Gradient descent: a refresher
	Gradient descent: the picture
	Global and local minima
	Error functions in ANN training
	Learning in ANNs
	Learning in multi-layer networks: the problem
	Backpropagation
	Backpropagation: visualization
	Backpropagation: visualization
	Backpropagation: visualization
	Regularization in neural networks
	Adapting learning rate
	How many layers, units
	A bit of history
	Summary, so far…

	Deep ANNs
	Deep neural networks
	Deep feed-forward networks
	Training deep networks
	Why now?

	CNNs
	Convolutional networks
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Convolution in image processing
	Example convolutions
	Learning convolutions
	Convolution in neural networks
	Pooling
	Pooling and location invariance
	Pooling and location invariance
	Pooling and location invariance
	Padding in CNNs
	Padding in CNNs
	CNNs: the bigger picture
	Real-world examples are complex
	CNNs in natural language processing
	An example: sentiment analysis
	Convolutional networks: summary

	RNNs
	Recurrent neural networks
	Recurrent neural networks
	Recurrent neural networks
	Recurrent neural networks
	A simple version: SRNs
	Processing sequences with RNNs
	Processing sequences with RNNs
	Processing sequences with RNNs
	Processing sequences with RNNs
	Processing sequences with RNNs
	Learning in recurrent networks
	Unrolling a recurrent network
	RNN architectures
	RNN architectures
	RNN architectures
	Bidirectional RNNs
	RNNs as language models
	Unstable gradients revisited
	Gated recurrent networks

	Autoencoders
	Unsupervised learning in ANNs
	Restricted Boltzmann machines (RBMs)
	Restricted Boltzmann machines (RBMs)
	The distribution defined by RBMs
	Learning in RBMs
	Autoencoders
	Autoencoders
	Under-complete autoencoders
	Over-complete autoencoders
	Denoising autoencoders
	Unsupervised pre-training
	Deep unsupervised learning
	Summary
	Summary



