Statistical Natural Language Processing N -gram Language Models

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2018

N -gram language models

- A language model answers the question how likely is a sequence of words in a given language?
- They assign scores, typically probabilities, to sequences (of words, letters, ...)
- n-gram language models are the 'classical' approach to language modeling
- The main idea is to estimate probabilities of sequences, using the probabilities of words given a limited history
- As a bonus we get the answer for what is the most likely word given previous words?

N -grams in practice: spelling correction

- How would a spell checker know that there is a spelling error in the following sentence?

N -grams in practice: spelling correction

- How would a spell checker know that there is a spelling error in the following sentence?

I like pizza wit spinach

N -grams in practice: spelling correction

- How would a spell checker know that there is a spelling error in the following sentence?

I like pizza wit spinach

- Or this one?

N -grams in practice: spelling correction

- How would a spell checker know that there is a spelling error in the following sentence?

I like pizza wit spinach

- Or this one?

Zoo animals on the lose

N -grams in practice: spelling correction

- How would a spell checker know that there is a spelling error in the following sentence?

I like pizza wit spinach

- Or this one?

Zoo animals on the lose

N -grams in practice: spelling correction

- How would a spell checker know that there is a spelling error in the following sentence?

I like pizza wit spinach

- Or this one?

Zoo animals on the lose

We want:

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{I} \text { like pizza with spinach }) & >\mathrm{P}(\text { I like pizza wit spinach }) \\
\mathrm{P}(\text { Zoo animals on the loose }) & >\mathrm{P}(\text { Zoo animals on the lose })
\end{array}
$$

N -grams in practice: speech recognition

We want:

$$
\mathrm{P}(\text { recognize speech })>\mathrm{P}(\text { wreck a nice beach })
$$

* Reproduced from Shillcock (1995)

Speech recognition gone wrong

What went wrong?

Recap: noisy channel model

- We want $P(u \mid A)$, probability of the utterance given the acoustic signal
- The model of the noisy channel gives us $P(A \mid u)$
- We can use Bayes' formula

$$
P(u \mid A)=\frac{P(A \mid u) P(u)}{P(A)}
$$

- $\mathrm{P}(\mathrm{u})$, probabilities of utterances, come from a language model

N-grams in practice: machine translation

German to English translation:

- Correct word choice

German
Der grosse Mann tanzt gerne Der grosse Mann weiß alles

English

The big man likes to dance
The great man knows all

- Correct ordering / word choice

$\frac{\text { German }}{\text { Er tanzt gerne }} \frac{\text { English alternatives }}{$| He dances with pleasure |
| :--- |
| He likes to dance |}

We want:
$P($ He likes to dance $)>P($ He dances with pleasure $)$

N -grams in practice: predictive text

natural
natural mojo
naturalismus
natural selection
natural

N -grams in practice: predictive text
natural language processing
natural language processing deutsch natural language processing java natural language processing with python natural language processing definition

N -grams in practice: predictive text

natural language processing

natural language processing deutsch natural language processing java natural language processing with python natural language processing definition

- How many language models are there in the example above?
- Screenshot from google.com - but predictive text is used everywhere
- If you want examples of predictive text gone wrong, look for 'auto-correct mistakes' on the Web.

More applications for language models

- Spelling correction
- Speech recognition
- Machine translation
- Predictive text
- Text recognition (OCR, handwritten)
- Information retrieval
- Question answering
- Text classification
- ...

Overview
of the overview

Why do we need n-gram language models?
What are they?

How do we build and use them?

What alternatives are out there?

Overview

in a bit more detail

- Why do we need n-gram language models?
- How to assign probabilities to sequences?
- N-grams: what are they, how do we count them?
- MLE: how to assign probabilities to n-grams?
- Evaluation: how do we know our n-gram model works well?
- Smoothing: how to handle unknown words?
- Some practical issues with implementing n-grams
- Extensions, alternative approaches

Our aim

We want to solve two related problems:

- Given a sequence of words $\boldsymbol{w}=\left(w_{1} w_{2} \ldots w_{\mathrm{m}}\right)$, what is the probability of the sequence

$$
\mathrm{P}(\boldsymbol{w}) ?
$$

(machine translation, automatic speech recognition, spelling correction)

- Given a sequence of words $w_{1} w_{2} \ldots w_{m-1}$, what is the probability of the next word

$$
\mathrm{P}\left(w_{\mathfrak{m}} \mid w_{1} \ldots w_{\mathfrak{m}-1}\right) ?
$$

(predictive text)

Assigning probabilities to sentences

count and divide?

How do we calculate the probability a sentence like $P(I$ like pizza with spinach)

Assigning probabilities to sentences count and divide?

How do we calculate the probability a sentence like $P(I$ like pizza with spinach)

- Can we count the occurrences of the sentence, and divide it by the total number of sentences (in a large corpus)?

$$
\mathrm{P}(\bullet)=\text { ? }
$$

Assigning probabilities to sentences count and divide?

How do we calculate the probability a sentence like $P(I$ like pizza with spinach)

- Can we count the occurrences of the sentence, and divide it by the total number of sentences (in a large corpus)?
- Short answer: No.

$$
\mathrm{P}(\bullet)=\text { ? }
$$

Assigning probabilities to sentences count and divide?

How do we calculate the probability a sentence like $P(I$ like pizza with spinach)

- Can we count the occurrences of the sentence, and divide it by the total number of sentences (in a large corpus)?
- Short answer: No.
- Many sentences are not observed even in very large corpora

$$
\mathrm{P}(\bullet)=\text { ? }
$$

Assigning probabilities to sentences count and divide?

How do we calculate the probability a sentence like P (I like pizza with spinach)

- Can we count the occurrences of the sentence, and divide it by the total number of sentences (in a large corpus)?
- Short answer: No.
- Many sentences are not observed even in very large corpora
- For the ones observed in a corpus, probabilities will not reflect our intuition, or will not be useful in most

$$
\mathrm{P}(\bullet)=\text { ? }
$$

 applications

Assigning probabilities to sentences
 applying the chain rule

- The solution is to decompose

We use probabilities of parts of the sentence (words) to calculate the probability of the whole sentence

- Using the chain rule of probability (without loss of generality), we can write

$$
\begin{aligned}
\mathrm{P}\left(w_{1}, w_{2}, \ldots, w_{\mathrm{m}}\right)= & \mathrm{P}\left(w_{2} \mid w_{1}\right) \\
& \times \mathrm{P}\left(w_{3} \mid w_{1}, w_{2}\right) \\
& \times \ldots \\
& \times \mathrm{P}\left(w_{\mathrm{m}} \mid w_{1}, w_{2}, \ldots w_{\mathrm{m}-1}\right)
\end{aligned}
$$

Example: applying the chain rule

$P(I$ like pizza with spinach $)=P($ like $\mid I)$
$\times \mathrm{P}($ pizza $\mid \mathrm{I}$ like $)$
$\times \mathrm{P}$ (with \mid I like pizza)
$\times \mathrm{P}$ (spinach $\mid \mathrm{I}$ like pizza with $)$

- Did we solve the problem?

Example: applying the chain rule

$P(I$ like pizza with spinach $)=P($ like $\mid I)$

$$
\begin{aligned}
& \times \mathrm{P}(\text { pizza } \mid \mathrm{I} \text { like }) \\
& \times \mathrm{P}(\text { with } \mid \mathrm{I} \text { like pizza }) \\
& \times \mathrm{P}(\text { spinach } \mid \mathrm{I} \text { like pizza with })
\end{aligned}
$$

- Did we solve the problem?
- Not really, the last term is equally difficult to estimate

Assigning probabilities to sentences

the Markov assumption
We make a conditional independence assumption: probabilities of words are independent, given n previous words

$$
\mathrm{P}\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)=\mathrm{P}\left(w_{i} \mid w_{i-n+1}, \ldots, w_{i-1}\right)
$$

and

$$
P\left(w_{1}, \ldots, w_{m}\right)=\prod_{i=1}^{m} P\left(w_{\mathfrak{i}} \mid w_{\mathfrak{i}-\mathrm{n}+1}, \ldots, w_{\mathfrak{i}-1}\right)
$$

For example, with $\mathfrak{n}=2$ (bigram, first order Markov model):

$$
P\left(w_{1}, \ldots, w_{m}\right)=\prod_{i=1}^{m} P\left(w_{i} \mid w_{i-1}\right)
$$

Example: bigram probabilities of a sentence

$\mathrm{P}(\mathrm{I}$ like pizza with spinach $)=\mathrm{P}($ like $\mid \mathrm{I})$
$\times \mathrm{P}($ pizza $\mid \mathrm{I}$ like $)$
$\times \mathrm{P}$ (with \mid I like pizza)
$\times \mathrm{P}$ (spinach $\mid \mathrm{I}$ like pizza with $)$

Example: bigram probabilities of a sentence

$P(I$ like pizza with spinach $)=P($ like $\mid I)$ $\times \mathrm{P}($ pizza \mid like $)$ $\times \mathrm{P}($ with \mid pizza $)$
$\times \mathrm{P}($ spinach \mid with $)$

- Now, hopefully, we can count them in a corpus

Maximum-likelihood estimation (MLE)

- Maximum-likelihood estimation of n-gram probabilities is based on their frequencies in a corpus
- We are interested in conditional probabilities of the form: $\mathrm{P}\left(w_{\mathrm{i}} \mid w_{1}, \ldots, w_{i-1}\right)$, which we estimate using

$$
\mathrm{P}\left(w_{i} \mid w_{i-n+1}, \ldots, w_{i-1}\right)=\frac{\mathrm{C}\left(w_{i-n+1} \ldots w_{i}\right)}{\mathrm{C}\left(w_{i-n+1} \ldots w_{i-1}\right)}
$$

where, $C()$ is the frequency (count) of the sequence in the corpus.

- For example, the probability $\mathrm{P}($ like | I) would be

$$
\begin{aligned}
\mathrm{P}(\text { like } \mid \mathrm{I}) & =\frac{\mathrm{C}(\mathrm{I} \text { like })}{\mathrm{C}(\mathrm{I})} \\
& =\frac{\text { number of times I like occurs in the corpus }}{\text { number of times I occurs in the corpus }}
\end{aligned}
$$

MLE estimation of an n-gram language model

An n-gram model conditioned on $n-1$ previous words.

- In a 1-gram (unigram) model,

$$
\mathrm{P}\left(w_{i}\right)=\frac{\mathrm{C}\left(w_{\mathrm{i}}\right)}{\mathrm{N}}
$$

- In a 2-gram (bigram) model,

$$
\mathrm{P}\left(w_{i}\right)=\mathrm{P}\left(w_{\mathrm{i}} \mid w_{\mathrm{i}-1}\right)=\frac{\mathrm{C}\left(w_{\mathrm{i}-1} w_{\mathrm{i}}\right)}{\mathrm{C}\left(w_{\mathrm{i}-1}\right)}
$$

- In a 3-gram (trigram) model,

$$
\mathrm{P}\left(w_{i}\right)=\mathrm{P}\left(w_{i} \mid w_{i-2} w_{i-1}\right)=\frac{\mathrm{C}\left(w_{i-2} w_{i-1} w_{i}\right)}{\mathrm{C}\left(w_{i-2} w_{i-1}\right)}
$$

Training an n-gram model involves estimating these parameters (conditional probabilities).

Unigrams

Unigrams are simply the single words (or tokens).

A small corpus
I'm sorry, Dave.
I'm afraid I can't do that.

Unigrams

Unigrams are simply the single words (or tokens).

A small corpus					When tokenized, we have 15 tokens, and 11 types.		
I 'm sorry, Dave . I 'm afraid I can 't do that							
Unigram counts							
ngram	freq	ngram	freq	ngram	freq	ngram	freq
1	3		1	afraid	1	do	1
'm	2	Dave	1	can		that	1
sorry	1	.	2	't	1		

Traditionally, can't is tokenized as $c a_{\sqcup} n^{\prime} t$ (similar to $h a v e_{\sqcup} n^{\prime} t, i s_{\llcorner } n^{\prime} t$ etc.), but for our purposes can ${ }_{\sqcup} t$ is more readable.

Unigram probability of a sentence

Unigram counts							
ngram	freq	ngram	freq	ngram	freq	ngram	freq
I	3	,	1	afraid	1	do	1
'm	2	Dave	1	can	1	that	1
sorry	1	.	2	't	1		

$$
\begin{aligned}
& \text { P(I 'm sorry , Dave .) } \\
& =P(I) \times P(1 m) \times P(\text { sorry }) \times P(,) \times P(\text { Dave }) \times P(.) \\
& =\frac{3}{15} \times \frac{2}{15} \times \frac{1}{15} \times \frac{1}{15} \times \frac{1}{15} \times \frac{2}{15} \\
& =0.00000105
\end{aligned}
$$

Unigram probability of a sentence

Unigram counts							
ngram	freq	ngram	freq	ngram	freq	ngram	freq
I	3	,	1	afraid	1	do	1
'm	2	Dave	1	can	1	that	1
sorry	1	.	2	't	1		

$$
\begin{aligned}
& \mathrm{P}(\mathrm{I} \text { 'm sorry , Dave .) } \\
& =\mathrm{P}(\mathrm{I}) \times \mathrm{P}(\text { 'm) } \times \\
& \\
& = \\
& = \\
& \\
& = \\
& \\
& = \\
& \hline
\end{aligned}
$$

N-gram models define probability distributions

- An n-gram model defines a probability distribution over words

$$
\sum_{w \in V} \mathrm{P}(w)=1
$$

- They also define probability distributions over word sequences of equal size. For example (length 2),

$$
\sum_{w \in V} \sum_{v \in \mathrm{~V}} \mathrm{P}(w) \mathrm{P}(v)=1
$$

word	prob
I	0.200
'm	0.133
't	0.133
'	0.067
Dave	0.067
afraid	0.067
can	0.067
do	0.067
sorry	0.067
that	0.067
	1.000

N-gram models define probability distributions

- An n-gram model defines a probability distribution over words

$$
\sum_{w \in V} \mathrm{P}(w)=1
$$

- They also define probability distributions over word sequences of equal size. For example (length 2),

$$
\sum_{w \in V} \sum_{v \in V} \mathrm{P}(w) \mathrm{P}(v)=1
$$

- What about sentences?

word	prob
I	0.200
'm	0.133
't	0.133
'	0.067
Dave	0.067
afraid	0.067
can	0.067
do	0.067
sorry	0.067
that	0.067
	1.000

Unigram probabilities

Unigram probabilities in a (slightly) larger corpus

 MLE probabilities in the Universal Declaration of Human Rights

Zipf's law - a short divergence

The frequency of a word is inversely proportional to its rank:

$$
\operatorname{rank} \times \text { frequency }=k \quad \text { or } \quad \text { frequency } \propto \frac{1}{\operatorname{rank}}
$$

- This is a reoccurring theme in (computational) linguistics: most linguistic units follow more-or-less a similar distribution
- Important consequence for us (in this lecture):
- even very large corpora will not contain some of the words (or n-grams)
- there will be many low-probability events (words/n-grams)

Bigrams

Bigrams are overlapping sequences of two tokens.

Bigram counts							
ngram	freq	ngram	freq	ngram	freq	ngram	freq
I'm	2	, Dave	1	afraid I	1	n't do	1
'm sorry	1	Dave .	1	I can	1	do that	1
sorry,	1	'm afraid	1	can 't	1	that.	1

Bigrams

Bigrams are overlapping sequences of two tokens.

Bigram counts

ngram	freq	ngram	freq	ngram	freq	ngram	freq
I'm	2	Dave	1	afraid I	1	n't do	1
'm sorry	1	Dave .	1	I can	1	do that	1
sorry ,	1	'm afraid	1	can 't	1	that.	1

- What about the bigram ' . I '?

Sentence boundary markers

If we want sentence probabilities, we need to mark them.
$\langle\mathrm{s}\rangle \mathrm{I}$ 'm sorry, Dave . $\langle/ \mathrm{s}\rangle$
$\langle\mathrm{s}\rangle \mathrm{I}$ 'm afraid I can 't do that . $\langle/ \mathrm{s}\rangle$

- The bigram ' $\langle s\rangle I$ ' is not the same as the unigram ' I ' Including $\langle\mathrm{s}\rangle$ allows us to predict likely words at the beginning of a sentence
- Including $\langle/ \mathrm{s}\rangle$ allows us to assign a proper probability distribution to sentences

Calculating bigram probabilities

recap with some more detail
We want to calculate $\mathrm{P}\left(w_{2} \mid w_{1}\right)$. From the chain rule:

$$
\mathrm{P}\left(w_{2} \mid w_{1}\right)=\frac{\mathrm{P}\left(w_{1}, w_{2}\right)}{\mathrm{P}\left(w_{1}\right)}
$$

and, the MLE

$$
\mathrm{P}\left(w_{2} \mid w_{1}\right)=\frac{\frac{\mathrm{C}\left(w_{1} w_{2}\right)}{\mathrm{N}}}{\frac{\mathrm{C}\left(w_{1}\right)}{\mathrm{N}}}=\frac{\mathrm{C}\left(w_{1} w_{2}\right)}{\mathrm{C}\left(w_{1}\right)}
$$

$\mathrm{P}\left(w_{2} \mid w_{1}\right)$ is the probability of w_{2} given the previous word is w_{1}
$\mathrm{P}\left(w_{2}, w_{1}\right)$ is the probability of the sequence $w_{1} w_{2}$
$\mathrm{P}\left(w_{1}\right)$ is the probability of w_{1} occurring as the first item in a bigram, not its unigram probability

Bigram probabilities

$w_{1} w_{2}$	$\mathrm{C}\left(w_{1} w_{2}\right)$	$\mathrm{C}\left(w_{1}\right)$	$\mathrm{P}\left(w_{1} w_{2}\right)$	$\mathrm{P}\left(w_{1}\right)$	$\mathrm{P}\left(w_{2} \mid w_{1}\right)$	$\mathrm{P}\left(w_{2}\right)$
$\langle\mathrm{s}\rangle \mathrm{I}$	2	2	0.12	0.12	1.00	0.18
I'm	2	3	0.12	0.18	0.67	0.12
'm sorry	1	2	0.06	0.12	0.50	0.06
sorry ,	1	1	0.06	0.06	1.00	0.06
, Dave	1	1	0.06	0.06	1.00	0.06
Dave .	1	1	0.06	0.06	1.00	0.12
'm afraid	1	2	0.06	0.12	0.50	0.06
afraid I	1	1	0.06	0.06	1.00	0.18
I can	1	3	0.06	0.18	0.33	0.06
can 't	1	1	0.06	0.06	1.00	0.06
n't do	1	1	0.06	0.06	1.00	0.06
do that	1	1	0.06	0.06	1.00	0.06
that .	1	1	0.06	0.06	1.00	0.12
. $\langle/ \mathrm{s}\rangle$	2	2	0.12	0.12	1.00	0.12

Sentence probability: bigram vs. unigram

Unigram vs. bigram probabilities

in sentences and non-sentences

w	I	'm	sorry	,	Dave	.	
$\mathrm{P}_{\text {uni }}$	0.20	0.13	0.07	0.07	0.07	0.07	2.83×10^{-9}
P_{bi}	1.00	0.67	0.50	1.00	1.00	1.00	0.33

Unigram vs. bigram probabilities

in sentences and non-sentences

w	I	'm	sorry	,	Dave	.	
$\mathrm{P}_{\text {uni }}$	0.20	0.13	0.07	0.07	0.07	0.07	2.83×10^{-9}
P_{bi}	1.00	0.67	0.50	1.00	1.00	1.00	0.33

w	,	'm	I	.	sorry	Dave	
$\mathrm{P}_{\text {uni }}$	0.07	0.13	0.20	0.07	0.07	0.07	2.83×10^{-9}
P_{bi}	0.00	0.00	0.00	0.00	0.00	1.00	0.00

Unigram vs. bigram probabilities

in sentences and non-sentences

w	I	'm	sorry	,	Dave	.	
$\mathrm{P}_{\text {uni }}$	0.20	0.13	0.07	0.07	0.07	0.07	2.83×10^{-9}
P_{bi}	1.00	0.67	0.50	1.00	1.00	1.00	0.33

w	,	'm	I	.	sorry	Dave	
$\mathrm{P}_{\text {uni }}$	0.07	0.13	0.20	0.07	0.07	0.07	2.83×10^{-9}
P_{bi}	0.00	0.00	0.00	0.00	0.00	1.00	0.00

w	I	'm	afraid	,	Dave	.	
$\mathrm{P}_{\text {uni }}$	0.07	0.13	0.07	0.07	0.07	0.07	2.83×10^{-9}
P_{bi}	1.00	0.67	0.50	0.00	0.50	1.00	0.00

Bigram model as a finite-state automaton

Trigrams

$\langle\mathrm{s}\rangle\langle\mathrm{s}\rangle \mathrm{I}$ 'm sorry , Dave . $\langle/ \mathrm{s}\rangle$
 $\langle\mathrm{s}\rangle\langle\mathrm{s}\rangle \mathrm{I}$ 'm afraid I can 't do that . $\langle/ \mathrm{s}\rangle$

Trigram counts					
ngram	freq	ngram	freq	ngram	freq
$\langle\mathrm{s}\rangle\langle\mathrm{s}\rangle \mathrm{I}$	2	do that	1	that. $\langle/ \mathrm{s}\rangle$	1
$\langle\mathrm{s}\rangle$ I'm	2	I'm sorry	1	'm sorry,	1
sorry, Dave	1	, Dave .	1	Dave. $\langle/ \mathrm{s}\rangle$	1
I'm afraid	1	'm afraid I	1	afraid I can	1
I can 't	1	can 't do	1	't do that	1

Trigrams

$\langle\mathrm{s}\rangle\langle\mathrm{s}\rangle \mathrm{I}$ 'm sorry , Dave . $\langle/ \mathrm{s}\rangle$
 $\langle\mathrm{s}\rangle\langle\mathrm{s}\rangle \mathrm{I}$ 'm afraid I can 't do that . $\langle/ \mathrm{s}\rangle$

Trigram counts					
ngram	freq	ngram	freq	ngram	freq
$\langle\mathrm{s}\rangle\langle\mathrm{s}\rangle \mathrm{I}$	2	do that.	1	that. $\langle/ \mathrm{s}\rangle$	1
<s I I'm	2	I'm sorry	1	'm sorry,	1
sorry, Dave	1	, Dave .	1	Dave. $\langle/ \mathrm{s}\rangle$	1
I'm afraid	1	'm afraid I	1	afraid I can	1
I can 't	1	can 't do	1	't do that	1

- How many n-grams are there in a sentence of length m ?

Trigram probabilities of a sentence

Short detour: colorless green ideas

But it must be recognized that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term. - Chomsky (1968)

- The following 'sentences' are categorically different:
- Furiously sleep ideas green colorless
- Colorless green ideas sleep furiously

Short detour: colorless green ideas

But it must be recognized that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term. - Chomsky (1968)

- The following 'sentences' are categorically different:
- Furiously sleep ideas green colorless
- Colorless green ideas sleep furiously
- Can n-gram models model the difference?

Short detour: colorless green ideas

But it must be recognized that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term. - Chomsky (1968)

- The following 'sentences' are categorically different:
- Furiously sleep ideas green colorless
- Colorless green ideas sleep furiously
- Can n-gram models model the difference?
- Should n-gram models model the difference?

What do n-gram models model?

- Some morphosyntax: the bigram 'ideas are' is (much more) likely than 'ideas is'

What do n-gram models model?

- Some morphosyntax: the bigram 'ideas are' is (much more) likely than 'ideas is'
- Some semantics: 'bright ideas' is more likely than 'green ideas'

What do n-gram models model?

- Some morphosyntax: the bigram 'ideas are' is (much more) likely than 'ideas is'
- Some semantics: 'bright ideas' is more likely than 'green ideas'
- Some cultural aspects of everyday language: ‘Chinese food' is more likely than 'British food'

What do n-gram models model?

- Some morphosyntax: the bigram 'ideas are' is (much more) likely than 'ideas is'
- Some semantics: 'bright ideas' is more likely than 'green ideas'
- Some cultural aspects of everyday language: ‘Chinese food' is more likely than 'British food'
- more aspects of 'usage' of language

What do n-gram models model?

- Some morphosyntax: the bigram 'ideas are' is (much more) likely than 'ideas is'
- Some semantics: 'bright ideas' is more likely than 'green ideas'
- Some cultural aspects of everyday language: ‘Chinese food' is more likely than 'British food'
- more aspects of 'usage' of language

What do n-gram models model?

- Some morphosyntax: the bigram 'ideas are' is (much more) likely than 'ideas is'
- Some semantics: 'bright ideas' is more likely than 'green ideas'
- Some cultural aspects of everyday language: ‘Chinese food' is more likely than 'British food'
- more aspects of 'usage' of language

N-gram models are practical tools, and they have been useful for many tasks.

N-grams, so far ...

- N-gram language models are one of the basic tools in NLP
- They capture some linguistic (and non-linguistic) regularities that are useful in many applications
- The idea is to estimate the probability of a sentence based on its parts (sequences of words)
- N-grams are n consecutive units in a sequence
- Typically, we use sequences of words to estimate sentence probabilities, but other units are also possible: characters, phonemes, phrases, ...
- For most applications, we introduce sentence boundary markers

How to test n-gram models?

Extrinsic: improvement of the target application due to the language model:

- Speech recognition accuracy
- BLEU score for machine translation
- Keystroke savings in predictive text applications

Intrinsic: the higher the probability assigned to a test set better the model. A few measures:

- Likelihood
- (cross) entropy
- perplexity

Training and test set division

- We (almost) never use a statistical (language) model on the training data
- Testing a model on the training set is misleading: the model may overfit the training set
- Always test your models on a separate test set

Intrinsic evaluation metrics: likelihood

- Likelihood of a model M is the probability of the (test) set w given the model

$$
\mathcal{L}(M \mid \boldsymbol{w})=\mathrm{P}(\boldsymbol{w} \mid M)=\prod_{s \in w} \mathrm{P}(\mathrm{~s})
$$

Intrinsic evaluation metrics: likelihood

- Likelihood of a model M is the probability of the (test) set w given the model

$$
\mathcal{L}(M \mid \boldsymbol{w})=\mathrm{P}(\boldsymbol{w} \mid M)=\prod_{s \in w} \mathrm{P}(s)
$$

- The higher the likelihood (for a given test set), the better the model

Intrinsic evaluation metrics: likelihood

- Likelihood of a model M is the probability of the (test) set w given the model

$$
\mathcal{L}(M \mid \boldsymbol{w})=\mathrm{P}(\boldsymbol{w} \mid M)=\prod_{s \in w} \mathrm{P}(s)
$$

- The higher the likelihood (for a given test set), the better the model
- Likelihood is sensitive to the test set size

Intrinsic evaluation metrics: likelihood

- Likelihood of a model M is the probability of the (test) set w given the model

$$
\mathcal{L}(M \mid \boldsymbol{w})=\mathrm{P}(\boldsymbol{w} \mid M)=\prod_{s \in w} \mathrm{P}(s)
$$

- The higher the likelihood (for a given test set), the better the model
- Likelihood is sensitive to the test set size
- Practical note: (minus) log likelihood is used more commonly, because of ease of numerical manipulation

Intrinsic evaluation metrics: cross entropy

- Cross entropy of a language model on a test set w is

$$
\mathrm{H}(\boldsymbol{w})=-\frac{1}{\mathrm{~N}} \sum_{w_{i}} \log _{2} \widehat{\mathrm{P}}\left(w_{i}\right)
$$

Intrinsic evaluation metrics: cross entropy

- Cross entropy of a language model on a test set w is

$$
\mathrm{H}(\boldsymbol{w})=-\frac{1}{\mathrm{~N}} \sum_{w_{i}} \log _{2} \widehat{\mathrm{P}}\left(w_{i}\right)
$$

- The lower the cross entropy, the better the model

Intrinsic evaluation metrics: cross entropy

- Cross entropy of a language model on a test set w is

$$
\mathrm{H}(\boldsymbol{w})=-\frac{1}{\mathrm{~N}} \sum_{w_{i}} \log _{2} \widehat{\mathrm{P}}\left(w_{i}\right)
$$

- The lower the cross entropy, the better the model
- Cross entropy is not sensitive to the test-set size

Intrinsic evaluation metrics: cross entropy

- Cross entropy of a language model on a test set w is

$$
\mathrm{H}(\boldsymbol{w})=-\frac{1}{\mathrm{~N}} \sum_{w_{i}} \log _{2} \widehat{\mathrm{P}}\left(w_{i}\right)
$$

- The lower the cross entropy, the better the model
- Cross entropy is not sensitive to the test-set size

Intrinsic evaluation metrics: cross entropy

- Cross entropy of a language model on a test set \boldsymbol{w} is

$$
\mathrm{H}(\boldsymbol{w})=-\frac{1}{\mathrm{~N}} \sum_{w_{i}} \log _{2} \widehat{\mathrm{P}}\left(w_{i}\right)
$$

- The lower the cross entropy, the better the model
- Cross entropy is not sensitive to the test-set size

Reminder: Cross entropy is the bits required to encode the data coming from a P using an approximate distribution $\widehat{\mathrm{P}}$.

$$
H(P, Q)=-\sum_{x} P(x) \log \widehat{P}(x)
$$

Intrinsic evaluation metrics: perplexity

- Perplexity is a more common measure for evaluating language models

$$
\mathrm{PP}(\boldsymbol{w})=2^{\mathrm{H}(\boldsymbol{w})}=\mathrm{P}(\boldsymbol{w})^{-\frac{1}{\mathrm{~N}}}=\sqrt[N]{\frac{1}{\mathrm{P}(\boldsymbol{w})}}
$$

- Perplexity is the average branching factor
- Similar to cross entropy
- lower better
- not sensitive to test set size

What do we do with unseen n-grams?

...and other issues with MLE estimates

- Words (and word sequences) are distributed according to the Zipf's law: many words are rare.
- MLE will assign 0 probabilities to unseen words, and sequences containing unseen words
- Even with non-zero probabilities, MLE overfits the training data
- One solution is smoothing: take some probability mass from known words, and assign it to unknown words

Smoothing: what is in the name?

samples from $\mathcal{N}(0,1)$

Laplace smoothing

(Add-one smoothing)

- The idea (from 1790): add one to all counts
- The probability of a word is estimated by

$$
P_{+1}(w)=\frac{\mathrm{C}(w)+1}{\mathrm{~N}+\mathrm{V}}
$$

N number of word tokens
V number of word types - the size of the vocabulary

- Then, probability of an unknown word is:

$$
\frac{0+1}{\mathrm{~N}+\mathrm{V}}
$$

Laplace smoothing

for n-grams

- The probability of a bigram becomes

$$
P_{+1}\left(w_{i} w_{i-1}\right)=\frac{C\left(w_{i} w_{i-1}\right)+1}{N+V^{2}}
$$

- and, the conditional probability

$$
P_{+1}\left(w_{i} \mid w_{i-1}\right)=\frac{\mathrm{C}\left(w_{i-1} w_{i}\right)+1}{\mathrm{C}\left(w_{i-1}\right)+\mathrm{V}}
$$

- In general

$$
\begin{aligned}
\mathrm{P}_{+1}\left(w_{i-n+1}^{i}\right) & =\frac{\mathrm{C}\left(w_{i-n+1}^{i}\right)+1}{N+V^{n}} \\
\mathrm{P}_{+1}\left(w_{i-n+1}^{i} \mid w_{i-n+1}^{i-1}\right) & =\frac{\mathrm{C}\left(w_{i-n+1}^{i}\right)+1}{\mathrm{C}\left(w_{i-n+1}^{i-1}\right)+V}
\end{aligned}
$$

Bigram probabilities

non-smoothed vs. Laplace smoothing

$w_{1} w_{2}$	C_{+1}	$P_{\text {MLE }}\left(w_{1} w_{2}\right)$	$P_{+1}\left(w_{1} w_{2}\right)$	$P_{\text {MLE }}\left(w_{2} \mid w_{1}\right)$	$P_{+1}\left(w_{2} \mid w_{1}\right)$
$\langle\mathrm{s}\rangle$ I	3	0.118	0.019	1.000	0.188
I'm	3	0.118	0.019	0.667	0.176
'm sorry	2	0.059	0.012	0.500	0.125
sorry,	2	0.059	0.012	1.000	0.133
Dave	2	0.059	0.012	1.000	0.133
Dave	2	0.059	0.012	1.000	0.133
'm afraid	2	0.059	0.012	0.500	0.125
afraid I	2	0.059	0.012	1.000	0.133
I can	2	0.059	0.012	0.333	0.118
can 't	2	0.059	0.012	1.000	0.133
n't do	2	0.059	0.012	1.000	0.133
do that	2	0.059	0.012	1.000	0.133
that	2	0.059	0.012	1.000	0.133
.$\langle/ \mathrm{s}\rangle$	3	0.118	0.019	1.000	0.188
\sum		1.000	0.193		

MLE vs. Laplace probabilities

bigram probabilities in sentences and non-sentences

w	I	'm	sorry	,	Dave	.	$\langle/ \mathrm{s}\rangle$	
$\mathrm{P}_{\text {MLE }}$	1.00	0.67	0.50	1.00	1.00	1.00	1.00	0.33
P_{+1}	0.25	0.23	0.17	0.18	0.18	0.18	0.25	1.44×10^{-5}

MLE vs. Laplace probabilities

bigram probabilities in sentences and non-sentences

w	I	'm	sorry	,	Dave	.	$\langle/ \mathrm{s}\rangle$	
$\mathrm{P}_{\text {MLE }}$	1.00	0.67	0.50	1.00	1.00	1.00	1.00	0.33
P_{+1}	0.25	0.23	0.17	0.18	0.18	0.18	0.25	1.44×10^{-5}

w	,	'm	I	.	sorry	Dave	$\langle/ \mathrm{s}\rangle$	
$\mathrm{P}_{\text {MLE }}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P_{+1}	0.08	0.09	0.08	0.08	0.08	0.09	0.09	3.34×10^{-8}

MLE vs. Laplace probabilities

bigram probabilities in sentences and non-sentences

w	I	'm	sorry	,	Dave	.	$\langle/ \mathrm{s}\rangle$	
$\mathrm{P}_{\text {MLE }}$	1.00	0.67	0.50	1.00	1.00	1.00	1.00	0.33
P_{+1}	0.25	0.23	0.17	0.18	0.18	0.18	0.25	1.44×10^{-5}

w	,	'm	I	.	sorry	Dave	$\langle/ \mathrm{s}\rangle$	
$\mathrm{P}_{\text {MLE }}$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P_{+1}	0.08	0.09	0.08	0.08	0.08	0.09	0.09	3.34×10^{-8}

w	I	'm	afraid	,	Dave	.	$\langle/ \mathrm{s}\rangle$	
$\mathrm{P}_{\text {uni }}$	1.00	0.67	0.50	0.00	1.00	1.00	1.00	0.00
P_{bi}	0.25	0.23	0.17	0.09	0.18	0.18	0.25	7.22×10^{-6}

How much mass does +1 smoothing steal?

- Laplace smoothing reserves probability mass proportional to the size of the vocabulary
- This is just too much for large vocabularies and higher order n-grams
- Note that only very few of the higher level n-grams (e.g., trigrams) are possible

Trigrams

Lidstone correction

(Add- α smoothing)

- A simple improvement over Laplace smoothing is adding $0<\alpha$ (and typically <1) instead of 1

$$
P_{+\alpha}\left(w_{i-n+1}^{i} \mid w_{i-n+1}^{i-1}\right)=\frac{\mathrm{C}\left(w_{i-n+1}^{i}\right)+\alpha}{\mathrm{C}\left(w_{i-n+1}^{i-1}\right)+\alpha V}
$$

- With smaller α values, the model behaves similar to MLE, it overfits: it has high variance
- Larger α values reduce overfitting/variance, but result in large bias

How do we pick a good α value

setting smoothing parameters

- We want α value that works best outside the training data
- Peeking at your test data during training/development is wrong
- This calls for another division of the available data: set aside a development set for tuning hyperparameters
- Alternatively, we can use k-fold cross validation and take the α with the best average score

Absolute discounting

- An alternative to the additive smoothing is to reserve an explicit amount of probability mass, ϵ, for the unseen events
- The probabilities of known events has to be re-normalized
- How do we decide what ϵ value to use?

Good-Turing smoothing

'discounting' view

- Estimate the probability mass to be reserved for the novel n-grams using the observed n-grams
- Novel events in our training set is the ones that occur once

$$
p_{0}=\frac{n_{1}}{n}
$$

where n_{1} is the number of distinct n-grams with frequency 1 in the training data

- Now we need to discount this mass from the higher counts
- The probability of an n-gram that occurred r times in the corpus is

$$
(r+1) \frac{n_{r+1}}{n_{r} n}
$$

Some terminology

frequencies of frequencies and equivalence classes

- We often put n-grams into equivalence classes
- Good-Turing forms the equivalence classes based on frequency

Note:

$$
\mathrm{n}=\sum_{\mathrm{r}} \mathrm{r} \times \mathrm{n}_{\mathrm{r}}
$$

Good-Turing estimation: leave-one-out justification

- Leave each n-gram out
- Count the number of times the left-out n-gram had frequency r in the remaining data
- novel n-grams

$$
\frac{n_{1}}{n}
$$

- n-grams with frequency 1 (singletons)

$$
(1+1) \frac{n_{2}}{n_{1} n}
$$

- n-grams with frequency 2 (doubletons)*

$$
(2+1) \frac{n_{3}}{n_{2} n}
$$

[^0]
Adjusted counts

Sometimes it is instructive to see the 'effective count' of an n-gram under the smoothing method.
For Good-Turing smoothing, the updated count, r^{*} is

$$
r^{*}=(r+1) \frac{n_{r+1}}{n_{r}}
$$

- novel items: n_{1}
- singletons: $\frac{2 \times n_{2}}{n_{1}}$
- doubletons: $\frac{3 \times n_{3}}{n_{2}}$
- ...

Good-Turing example

Issues with Good-Turing discounting

With some solutions

- Zero counts: we cannot assign probabilities if $n_{r+1}=0$
- The estimates of some of the frequencies of frequencies are unreliable
- A solution is to replace n_{r} with smoothed counts z_{r}
- A well-known technique (simple Good-Turing) for smoothing n_{r} is to use linear interpolation

$$
\log z_{r}=a+b \log r
$$

N-grams, so far ...

- Two different ways of evaluating n-gram models:

Extrinsic success in an external application Intrinsic likelihood, (cross) entropy, perplexity

- Intrinsic evaluation metrics often correlate well with the extrinsic metrics
- Test your n-grams models on an 'unseen' test set

N-grams, so far ...

- Smoothing methods solve the zero-count problem (also reduce the variance)
- Smoothing takes away some probability mass from the observed n-grams, and assigns it to unobserved ones
- Additive smoothing: add a constant α to all counts
- $\alpha=1$ (Laplace smoothing) simply adds one to all counts simple but often not very useful
- A simple correction is to add a smaller α, which requires tuning over a development set
- Discounting removes a fixed amount of probability mass, ϵ, from the observed n-grams
- We need to re-normalize the probability estimates
- Again, we need a development set to tune ϵ
- Good-Turing discounting reserves the probability mass to the unobserved events based on the n-grams seen only once: $p_{0}=\frac{n_{1}}{n}$

Not all (unknown) n-grams are equal

- Let's assume that black squirrel is an unknown bigram
- How do we calculate the smoothed probability

$$
P_{+1}(\text { squirrel } \mid \text { black })=
$$

Not all (unknown) n-grams are equal

- Let's assume that black squirrel is an unknown bigram
- How do we calculate the smoothed probability

$$
\mathrm{P}_{+1}(\text { squirrel } \mid \text { black })=\frac{0+1}{\mathrm{C}(\text { black })+\mathrm{V}}
$$

Not all (unknown) n-grams are equal

- Let's assume that black squirrel is an unknown bigram
- How do we calculate the smoothed probability

$$
\mathrm{P}_{+1}(\text { squirrel } \mid \text { black })=\frac{0+1}{\mathrm{C}(\text { black })+\mathrm{V}}
$$

- How about black wug?

$$
\mathrm{P}_{+1}(\text { black wug })=
$$

Not all (unknown) n-grams are equal

- Let's assume that black squirrel is an unknown bigram
- How do we calculate the smoothed probability

$$
\mathrm{P}_{+1}(\text { squirrel } \mid \text { black })=\frac{0+1}{\mathrm{C}(\text { black })+\mathrm{V}}
$$

- How about black wug?

$$
P_{+1}(\text { black wug })=P_{+1}(\text { wug } \mid \text { black })=
$$

Not all (unknown) n-grams are equal

- Let's assume that black squirrel is an unknown bigram
- How do we calculate the smoothed probability

$$
\mathrm{P}_{+1}(\text { squirrel } \mid \text { black })=\frac{0+1}{\mathrm{C}(\text { black })+\mathrm{V}}
$$

- How about black wug?

$$
P_{+1}(\text { black wug })=P_{+1}(\text { wug } \mid \text { black })=\frac{0+1}{C(\text { black })+V}
$$

- Would it make a difference if we used a better smoothing method (e.g., Good-Turing?)

Back-off and interpolation

The general idea is to fall-back to lower order n-gram when estimation is unreliable

- Even if,

$$
\mathrm{C}(\text { black squirrel })=\mathrm{C}(\text { black wug })=0
$$

it is unlikely that

$$
C(\text { squirrel })=C(\text { wug })
$$

in a reasonably sized corpus

Back-off

Back-off uses the estimate if it is available, 'backs off' to the lower order n-gram(s) otherwise:

$$
\mathrm{P}\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\mathrm{P}^{*}\left(w_{i} \mid w_{i-1}\right) & \text { if } \mathrm{C}\left(w_{i-1} w i\right)>0 \\ \alpha \mathrm{P}\left(w_{i}\right) & \text { otherwise }\end{cases}
$$

where,

- $\mathrm{P}^{*}(\cdot)$ is the discounted probability
- α makes sure that $\sum P(w)$ is the discounted amount
- $\mathrm{P}\left(w_{i}\right)$, typically, smoothed unigram probability

Interpolation

Interpolation uses a linear combination:

$$
P_{\text {int }}\left(w_{i} \mid w_{i-1}\right)=\lambda P\left(w_{i} \mid w_{i-1}\right)+(1-\lambda) P\left(w_{i}\right)
$$

In general (recursive definition),
$P_{\text {int }}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)=\lambda P\left(w_{i} \mid w_{i-n+1}^{i-1}\right)+(1-\lambda) P_{\text {int }}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)$

- $\sum \lambda_{i}=1$
- Recursion terminates with
- either smoothed unigram counts
- or uniform distribution $\frac{1}{V}$

Not all contexts are equal

- Back to our example: given both bigrams
- black squirrel
- wuggy squirrel
are unknown, the above formulations assign the same probability to both bigrams

Not all contexts are equal

- Back to our example: given both bigrams
- black squirrel
- wuggy squirrel
are unknown, the above formulations assign the same probability to both bigrams
- To solve this, the back-off or interpolation parameters (α or λ) are often conditioned on the context
- For example,

$$
\begin{aligned}
P_{\text {int }}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)= & \lambda_{w_{i-n+1}^{i}-1} P\left(w_{i} \mid w_{i-n+1}^{i-1}\right) \\
& +\left(1-\lambda_{w_{i-n+1}^{i}-1}\right) P_{i n t}\left(w_{i} \mid w_{i-n+2}^{i-1}\right)
\end{aligned}
$$

Katz back-off

A popular back-off method is Katz back-off:

$$
P_{\text {Katz }}\left(w_{i} \mid w_{i-n+1}^{i-1}\right)= \begin{cases}P^{*}\left(w_{i} \mid w_{i-n+1}^{i-1}\right) & \text { if } \mathrm{C}\left(w_{i-n+1}^{i}\right)>0 \\ \alpha_{w_{i-n+1}^{i-1}} P_{\text {katz }}\left(w_{i} \mid w_{i-n+2}^{i-1}\right) & \text { otherwise }\end{cases}
$$

- $\mathrm{P}^{*}(\cdot)$ is the Good-Turing discounted probability estimate (only for n-grams with small counts)
- $\alpha_{w_{i-n+1}^{i-1}}$ makes sure that the back-off probabilities sum to the discounted amount
- α is high for frequent contexts. So, hopefully,

$$
\begin{aligned}
\alpha_{\text {black }} P(\text { squirrel }) & >\quad \alpha_{\text {wuggy }} P(\text { squirrel }) \\
P(\text { squirrel } \mid \text { black }) & >P(\text { squirrel } \mid \text { wuggy })
\end{aligned}
$$

A quick summary

Markov assumption

- Our aim is to assign probabilities to sentences P(I'm sorry , Dave .) = ?

A quick summary
 Markov assumption

- Our aim is to assign probabilities to sentences P(I'm sorry , Dave .) = ?
Problem: We cannot just count \& divide
- Most sentences are rare: no (reliable) way to count their occurrences
- Sentence-internal structure tells a lot about it's probability

A quick summary
 Markov assumption

- Our aim is to assign probabilities to sentences P(I'm sorry , Dave .) = ?
Problem: We cannot just count \& divide
- Most sentences are rare: no (reliable) way to count their occurrences
- Sentence-internal structure tells a lot about it's probability

Solution: Divide up, simplify with a Markov assumption $\mathrm{P}(\mathrm{I}$ 'm sorry , Dave $)=$

```
    P(I| \s\rangle)P('m|I)P(sorry |'m)P(,| sorry)P(Dave|,)P(.|Dave)P(\langle/s\rangle|.)
``` Now we can count the parts (n-grams), and estimate their probability with MLE.

\section*{A quick summary}

Smoothing
Problem The MLE assigns 0 probabilities to unobserved n-grams, and any sentence containing unobserved n-grams. In general, it overfits

\section*{A quick summary}

Smoothing
Problem The MLE assigns 0 probabilities to unobserved n-grams, and any sentence containing unobserved n-grams. In general, it overfits
Solution Reserve some probability mass for unobserved n-grams Additive smoothing add \(\alpha\) to every count
\[
P_{+\alpha}\left(w_{i-n+1}^{i} \mid w_{i-n+1}^{i-1}\right)=\frac{C\left(w_{i-n+1}^{i}\right)+\alpha}{C\left(w_{i-n+1}^{i-1}\right)+\alpha V}
\]

Discounting - reserve a fixed amount of probability mass to unobserved n-grams
- normalize the probabilities of observed n-grams
(e.g., Good-Turing smoothing)

\section*{A quick summary}

Back-off \& interpolation

\section*{Problem if unseen we assign the same probability for}
- black squirrel
- black wug

\section*{A quick summary}

Back-off \& interpolation

Problem if unseen we assign the same probability for
- black squirrel
- black wug

Solution Fall back to lower-order n-grams when you cannot estimate the higher-order n-gram Back-off
\[
\mathrm{P}\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\mathrm{P}^{*}\left(w_{i} \mid w_{i-1}\right) & \text { if } \mathrm{C}\left(w_{i-1} w i\right)>0 \\ \alpha \mathrm{P}\left(w_{i}\right) & \text { otherwise }\end{cases}
\]

Interpolation
\[
P_{\text {int }}\left(w_{i} \mid w_{i-1}\right)=\lambda P\left(w_{i} \mid w_{i-1}\right)+(1-\lambda) P\left(w_{i}\right)
\]

Now P (squirrel) contributes to P (squirrel|black), it should be higher than P (wug | black).

\section*{A quick summary}

Problems with simple back-off / interpolation
Problem if unseen, we assign the same probability for
- black squirrel
- wuggy squirrel

\section*{A quick summary}

Problems with simple back-off / interpolation
Problem if unseen, we assign the same probability for
- black squirrel
- wuggy squirrel

Solution make normalizing constants (\(\alpha, \lambda\)) context dependent, higher for context n-grams that are more frequent Back-off
\[
\mathrm{P}\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\mathrm{P}^{*}\left(w_{\mathrm{i}} \mid w_{i-1}\right) & \text { if } \mathrm{C}\left(w_{i-1} w i\right)>0 \\ \alpha_{i-1} \mathrm{P}\left(w_{i}\right) & \text { otherwise }\end{cases}
\]

Interpolation
\[
\mathrm{P}_{\text {int }}\left(w_{i} \mid w_{i-1}\right)=\mathrm{P}^{*}\left(w_{i} \mid w_{i-1}\right)+\lambda_{w_{i-1}} \mathrm{P}\left(w_{i}\right)
\]

Now P (black) contributes to P (squirrel | black), it should be higher than P (wuggy | squirrel).

\section*{Kneser-Ney interpolation: intuition}
- Use absolute discounting for the higher order n-gram
- Estimate the lower order n-gram probabilities based on the probability of the target word occurring in a new context
- Example:

I can't see without my reading \(\qquad\) .

\section*{Kneser-Ney interpolation: intuition}
- Use absolute discounting for the higher order n-gram
- Estimate the lower order n-gram probabilities based on the probability of the target word occurring in a new context
- Example:

I can't see without my reading glasses.

\section*{Kneser-Ney interpolation: intuition}
- Use absolute discounting for the higher order n-gram
- Estimate the lower order n-gram probabilities based on the probability of the target word occurring in a new context
- Example:

I can't see without my reading glasses.
- It turns out the word Francisco is more frequent than glasses (in the typical English corpus, PTB)

\section*{Kneser-Ney interpolation: intuition}
- Use absolute discounting for the higher order n-gram
- Estimate the lower order n-gram probabilities based on the probability of the target word occurring in a new context
- Example:

I can't see without my reading glasses.
- It turns out the word Francisco is more frequent than glasses (in the typical English corpus, PTB)
- But Francisco occurs only in the context San Francisco

\section*{Kneser-Ney interpolation: intuition}
- Use absolute discounting for the higher order n-gram
- Estimate the lower order n-gram probabilities based on the probability of the target word occurring in a new context
- Example:

I can't see without my reading glasses.
- It turns out the word Francisco is more frequent than glasses (in the typical English corpus, PTB)
- But Francisco occurs only in the context San Francisco
- Assigning probabilities to unigrams based on the number of unique contexts they appear makes glasses more likely

\section*{Kneser-Ney interpolation}
for bigrams

- \(\lambda\) s make sure that the probabilities sum to 1
- The same idea can be applied to back-off as well (interpolation seems to work better)

\section*{Some shortcomings of the n-gram language models}

The n-gram language models are simple and successful, but ...
- They are highly sensitive to the training data: you do not want to use an n-gram model trained on business news for medical texts
- They cannot handle long-distance dependencies: In the last race, the horse he bought last year finally \(\qquad\) .
- The success often drops in morphologically complex languages
- The smoothing methods are often 'a bag of tricks'

\section*{Cluster-based n-grams}
- The idea is to cluster the words, and fall-back (back-off or interpolate) to the cluster
- For example,
- a clustering algorithm is likely to form a cluster containing words for food, e.g., \{apple, pear, broccoli, spinach\}
- if you have never seen eat your broccoli, estimate
\[
\mathrm{P}(\text { broccoli|eat your })=\mathrm{P}(\text { FOOD } \mid \text { eat your }) \times \mathrm{P}(\text { broccoli } \mid F O O D)
\]
- Clustering can be
hard a word belongs to only one cluster (simplifies the model) soft words can be assigned to clusters probabilistically (more flexible)

\section*{Skipping}
- The contexts
- boring|the lecture was
- boring| (the) lecture yesterday was are completely different for an n-gram model
- A potential solution is to consider contexts with gaps, 'skipping' one or more words
- We would, for example model P(e|abcd) with a combination (e.g., interpolation) of
- P(e|abc_)
- P(e|ab_d)
- \(P\left(e \mid a _c d\right)\)
- ...

\section*{Modeling sentence types}
- Another way to improve a language model is to condition on the sentence types
- The idea is different types of sentences (e.g., ones related to different topics) have different behavior
- Sentence types are typically based on clustering
- We create multiple language models, one for each sentence type
- Often a 'general' language model is used, as a fall-back

\section*{Caching}
- If a word is used in a document, its probability of being used again is high
- Caching models condition the probability of a word, to a larger context (besides the immediate history), such as
- the words in the document (if document boundaries are marked)
- a fixed window around the word

\section*{Structured language models}
- Another possibility is using a generative parser
- Parsers try to explicitly model (good) sentences
- Parser naturally capture long-distance dependencies
- Parsers require much more computational resources than the n-gram models
- The improvements are often small (if any)

\section*{Maximum entropy models}
- We can fit a logistic regression 'max-ent' model predicting \(P(w \mid\) context \()\)
- Main advantage is to be able to condition on arbitrary features

\section*{Neural language models}
- A neural network can be trained to predict a word from its context
- Then we can use the network for estimating the \(\mathrm{P}(w \mid\) context \()\)
- In the process, the hidden layer(s) of a network will learn internal representations for the word
- These representations, known as embeddings, are continuous representations that place similar words in the same neighborhood in a high-dimensional space
- We will return to embeddings later in this course

\section*{Some notes on implementation}
- The typical use of n-gram models are on (very) large corpora
- We often need care for numeric instability issues:
- For example, often it is more convenient to work with 'log probabilities'
- Sometimes (log) probabilities are 'binned' into integers, stored with small number of bits in memory
- Memory or storage may become a problem too
- Assuming words below a frequency are 'unknown' often helps
- Choice of correct data structure becomes important,
- A common data structure is a trie or a suffix tree

\section*{Summary}
- We want to assign probabilities to sentences
- N-gram language models do this by
- estimating probabilities of parts of the sentence (n-grams)
- use the n-gram probability and a conditional independence assumption to estimate the probability of the sentence
- MLE estimate for n-gram overfit
- Smoothing is a way to fight overfitting
- Back-off and interpolation yields better 'smoothing'
- There are other ways to improve n-gram models, and language models without (explicitly) use of n-grams

\section*{Summary}
- We want to assign probabilities to sentences
- N-gram language models do this by
- estimating probabilities of parts of the sentence (n-grams)
- use the n-gram probability and a conditional independence assumption to estimate the probability of the sentence
- MLE estimate for n-gram overfit
- Smoothing is a way to fight overfitting
- Back-off and interpolation yields better 'smoothing'
- There are other ways to improve n-gram models, and language models without (explicitly) use of n-grams

Next:
Today POS tagging
Mon/Fri Statistical parsing

\section*{Additional reading, references, credits}
- Textbook reference: Jurafsky and Martin (2009, chapter 4) (draft chapter for the 3rd version is also available). Some of the examples in the slides come from this book.
- Chen and J. Goodman (1998) and Chen and J. Goodman (1999) include a detailed comparison of smoothing methods. The former (technical report) also includes a tutorial introduction
- J. T. Goodman (2001) studies a number of improvements to (n-gram) language models we have discussed. This technical report also includes some introductory material
- Gale and Sampson (1995) introduce the 'simple' Good-Turing estimation noted on Slide 19. The article also includes an introduction to the basic method.

\section*{Additional reading, references, credits (cont.)}
- The quote from 2001: A Space Odyssey, 'I'm sorry Dave. I'm afraid I can't do it.' is probably one of the most frequent quotes in the CL literature. It was also quoted, among many others, by Jurafsky and Martin (2009).
- The HAL9000 camera image on page 19 is from Wikipedia, (re)drawn by Wikipedia user Cryteria.
- The Herman comic used in slide 4 is also a popular example in quite a few lecture slides posted online, it is difficult to find out who was the first.
- The smoothing visualization on slide ?? inspired by Julia Hockenmaier's slides.

Chen, Stanley F and Joshua Goodman (1998). An empirical study of smoothing techniques for language modeling.
Tech. rep. TR-10-98. Harvard University, Computer Science Group. url:
https://dash.harvard.edu/handle/1/25104739.
- (1999). "An empirical study of smoothing techniques for language modeling". In: Computer speech \(\&\) language 13.4, pp. 359-394.

\section*{Additional reading, references, credits (cont.)}

Chomsky, Noam (1968). "Quine's empirical assumptions". In: Synthese 19.1, pp. 53-68. Dor: 10.1007/BF00568049.
Gale, William A and Geoffrey Sampson (1995). "Good-Turing frequency estimation without tears". In: Journal of Quantitative Linguistics 2.3, pp. 217-237.

Goodman, Joshua T (2001). A bit of progress in language modeling extended version. Tech. rep. MSR-TR-2001-72.
Microsoft Research.
Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. IsBs: 978-0-13-504196-3.

Shillcock, Richard (1995). "Lexical Hypotheses in Continuous Speech". In: Cognitive Models of Speech Processing. Ed. by Gerry T. M. Altmann. MIT Press.```

[^0]: * Yes, this seems to be a word.

