
Statistical Natural Language Processing
N-gram Language Models

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2018

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-gram language models

• A language model answers the question how likely is a
sequence of words in a given language?

• They assign scores, typically probabilities, to sequences (of
words, letters, …)

• n-gram language models are the ‘classical’ approach to
language modeling

• The main idea is to estimate probabilities of sequences,
using the probabilities of words given a limited history

• As a bonus we get the answer for what is the most likely word
given previous words?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 1 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-grams in practice: spelling correction

• How would a spell checker know that there is a spelling
error in the following sentence?

I like pizza wit spinach
• Or this one?

Zoo animals on the lose

We want:

P(I like pizza with spinach) > P(I like pizza wit spinach)
P(Zoo animals on the loose) > P(Zoo animals on the lose)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 2 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-grams in practice: speech recognition

r e k @ n ai s b ii ch
her and I s be
a aren’t ice bee

an eye beach
not

nice
an

aren’t speech
in ice speech

wreck on
reckon

recognize

We want:
P(recognize speech) > P(wreck a nice beach)

* Reproduced from Shillcock (1995)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 3 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Speech recognition gone wrong

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 4 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Speech recognition gone wrong

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 4 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Speech recognition gone wrong

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 4 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Speech recognition gone wrong

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 4 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

What went wrong?
Recap: noisy channel model

tell the truth encoder decoder smell the soup

noisy
channel

• We want P(u |A), probability of the utterance given the
acoustic signal

• The model of the noisy channel gives us P(A | u)

• We can use Bayes’ formula

P(u |A) =
P(A | u)P(u)

P(A)

• P(u), probabilities of utterances, come from a language
model

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 5 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-grams in practice: machine translation
German to English translation:

• Correct word choice
German English

Der grosse Mann tanzt gerne The big man likes to dance
Der grosse Mann weiß alles The great man knows all

• Correct ordering / word choice
German English alternatives

Er tanzt gerne He dances with pleasure
He likes to dance

We want:
P(He likes to dance) > P(He dances with pleasure)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 6 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-grams in practice: predictive text

• How many language models are there in the example
above?

• Screenshot from google.com - but predictive text is used
everywhere

• If you want examples of predictive text gone wrong, look
for ‘auto-correct mistakes’ on the Web.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 7 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-grams in practice: predictive text

• How many language models are there in the example
above?

• Screenshot from google.com - but predictive text is used
everywhere

• If you want examples of predictive text gone wrong, look
for ‘auto-correct mistakes’ on the Web.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 7 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

More applications for language models

• Spelling correction
• Speech recognition
• Machine translation
• Predictive text
• Text recognition (OCR, handwritten)
• Information retrieval
• Question answering
• Text classification
• …

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 8 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Overview
of the overview

Why do we need n-gram language models?
What are they?

How do we build and use them?
What alternatives are out there?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 9 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Overview
in a bit more detail

• Why do we need n-gram language models?
• How to assign probabilities to sequences?
• N-grams: what are they, how do we count them?
• MLE: how to assign probabilities to n-grams?
• Evaluation: how do we know our n-gram model works

well?
• Smoothing: how to handle unknown words?
• Some practical issues with implementing n-grams
• Extensions, alternative approaches

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 10 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Our aim

We want to solve two related problems:
• Given a sequence of words w = (w1w2 . . .wm),

what is the probability of the sequence
P(w)?

(machine translation, automatic speech recognition, spelling correction)

• Given a sequence of words w1w2 . . .wm−1,
what is the probability of the next word

P(wm |w1 . . .wm−1)?
(predictive text)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 11 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Assigning probabilities to sentences
count and divide?

How do we calculate the probability a sen-
tence like P(I like pizza with spinach)

• Can we count the occurrences of the
sentence, and divide it by the total
number of sentences (in a large corpus)?

• Short answer: No.
– Many sentences are not observed even

in very large corpora
– For the ones observed in a corpus,

probabilities will not reflect our
intuition, or will not be useful in most
applications

P() = ?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 12 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Assigning probabilities to sentences
applying the chain rule

• The solution is to decompose
We use probabilities of parts of the sentence (words) to
calculate the probability of the whole sentence

• Using the chain rule of probability (without loss of
generality), we can write

P(w1,w2, . . . ,wm) = P(w2 |w1)

× P(w3 |w1,w2)

× . . .

× P(wm |w1,w2, . . .wm−1)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 13 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Example: applying the chain rule

P(I like pizza with spinach) = P(like | I)
× P(pizza | I like)
× P(with | I like pizza)
× P(spinach | I like pizza with)

• Did we solve the problem?
• Not really, the last term is equally difficult to estimate

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 14 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Assigning probabilities to sentences
the Markov assumption

We make a conditional independence assumption: probabilities of
words are independent, given n previous words

P(wi |w1, . . . ,wi−1) = P(wi |wi−n+1, . . . ,wi−1)

and

P(w1, . . . ,wm) =

m∏
i=1

P(wi |wi−n+1, . . . ,wi−1)

For example, with n = 2 (bigram, first order Markov model):

P(w1, . . . ,wm) =

m∏
i=1

P(wi |wi−1)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 15 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Example: bigram probabilities of a sentence

P(I like pizza with spinach) = P(like | I)
× P(pizza | like)
× P(with | pizza)
× P(spinach | with)

• Now, hopefully, we can count them in a corpus

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 16 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Maximum-likelihood estimation (MLE)

• Maximum-likelihood estimation of n-gram probabilities is
based on their frequencies in a corpus

• We are interested in conditional probabilities of the form:
P(wi |w1, . . . ,wi−1), which we estimate using

P(wi |wi−n+1, . . . ,wi−1) =
C(wi−n+1 . . .wi)

C(wi−n+1 . . .wi−1)

where, C() is the frequency (count) of the sequence in the
corpus.

• For example, the probability P(like | I) would be

P(like | I) =
C(I like)
C(I)

=
number of times I like occurs in the corpus

number of times I occurs in the corpus

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 17 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

MLE estimation of an n-gram language model
An n-gram model conditioned on n− 1 previous words.

• In a 1-gram (unigram) model,

P(wi) =
C(wi)

N

• In a 2-gram (bigram) model,

P(wi) = P(wi |wi−1) =
C(wi−1wi)

C(wi−1)

• In a 3-gram (trigram) model,

P(wi) = P(wi |wi−2wi−1) =
C(wi−2wi−1wi)

C(wi−2wi−1)

Training an n-gram model involves estimating these pa-
rameters (conditional probabilities).

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 18 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Unigrams

Unigrams are simply the single words (or tokens).

A small corpus

I ’m sorry , Dave .
I ’m afraid I can ’t do that .

When tokenized, we
have 15 tokens, and 11

types.

Unigram counts

ngram freq ngram freq ngram freq ngram freq

I 3 , 1 afraid 1 do 1

’m 2 Dave 1 can 1 that 1

sorry 1 . 2 ’t 1

Traditionally, can’t is tokenized as ca␣n’t (similar to have␣n’t, is␣n’t etc.), but for our purposes can␣’t is more readable.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 19 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Unigram probability of a sentence
Unigram counts

ngram freq ngram freq ngram freq ngram freq

I 3 , 1 afraid 1 do 1

’m 2 Dave 1 can 1 that 1

sorry 1 . 2 ’t 1

P(I 'm sorry , Dave .)

= P(I) × P('m) × P(sorry) × P(,) × P(Dave) × P(.)

= 3
15

× 2
15

× 1
15

× 1
15

× 1
15

× 2
15

= 0.000 001 05

• P(, 'm I . sorry Dave) = ?

• What is the most likely sentence according to this model?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 20 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-gram models define probability distributions

• An n-gram model defines a probability
distribution over words∑

w∈V

P(w) = 1

• They also define probability
distributions over word sequences of
equal size. For example (length 2),∑

w∈V

∑
v∈V

P(w)P(v) = 1

• What about sentences?

word prob

I 0.200
’m 0.133
. 0.133
’t 0.067
, 0.067
Dave 0.067
afraid 0.067
can 0.067
do 0.067
sorry 0.067
that 0.067

1.000

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 21 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Unigram probabilities

I

’m

. ’t ,
Da

ve
af

ra
id ca
n do

so
rr

y

th
at

0

0.1

0.2
3

2 2

1 1 1 1 1 1 1 1

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 22 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Unigram probabilities in a (slightly) larger corpus
MLE probabilities in the Universal Declaration of Human Rights

0 50 100 150 200 250

0.00

0.02

0.04

0.06

a long tail follows … 536

rank

M
LE

pr
ob

ab
ili

ty

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 23 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Zipf’s law – a short divergence

The frequency of a word is inversely proportional to its rank:

rank × frequency = k or frequency ∝ 1

rank

• This is a reoccurring theme in (computational) linguistics:
most linguistic units follow more-or-less a similar
distribution

• Important consequence for us (in this lecture):
– even very large corpora will not contain some of the words

(or n-grams)
– there will be many low-probability events (words/n-grams)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 24 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Bigrams
Bigrams are overlapping sequences of two tokens.

I ’m sorry , Dave .
I ’m afraid I can ’t do that .

Bigram counts

ngram freq ngram freq ngram freq ngram freq

I ’m 2 , Dave 1 afraid I 1 n’t do 1

’m sorry 1 Dave . 1 I can 1 do that 1

sorry , 1 ’m afraid 1 can ’t 1 that . 1

• What about the bigram ‘ . I ’?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 25 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Sentence boundary markers

If we want sentence probabilities, we need to mark them.

⟨s⟩ I ’m sorry , Dave . ⟨/s⟩
⟨s⟩ I ’m afraid I can ’t do that . ⟨/s⟩

• The bigram ‘ ⟨s⟩ I ’ is not the same as the unigram ‘ I ’
Including ⟨s⟩ allows us to predict likely words at the
beginning of a sentence

• Including ⟨/s⟩ allows us to assign a proper probability
distribution to sentences

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 26 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Calculating bigram probabilities
recap with some more detail

We want to calculate P(w2 |w1). From the chain rule:

P(w2 |w1) =
P(w1,w2)

P(w1)

and, the MLE

P(w2 |w1) =
C(w1w2)

N
C(w1)

N

=
C(w1w2)

C(w1)

P(w2 |w1) is the probability of w2 given the previous word is w1

P(w2,w1) is the probability of the sequence w1w2

P(w1) is the probability of w1 occurring as the first item in a bigram,
not its unigram probability

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 27 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Bigram probabilities
w1w2 C(w1w2) C(w1) P(w1w2) P(w1) P(w2 |w1) P(w2)

⟨s⟩ I 2 2 0.12 0.12 1.00 0.18
I ’m 2 3 0.12 0.18 0.67 0.12
’m sorry 1 2 0.06 0.12 0.50 0.06
sorry , 1 1 0.06 0.06 1.00 0.06
, Dave 1 1 0.06 0.06 1.00 0.06
Dave . 1 1 0.06 0.06 1.00 0.12
’m afraid 1 2 0.06 0.12 0.50 0.06
afraid I 1 1 0.06 0.06 1.00 0.18
I can 1 3 0.06 0.18 0.33 0.06
can ’t 1 1 0.06 0.06 1.00 0.06
n’t do 1 1 0.06 0.06 1.00 0.06
do that 1 1 0.06 0.06 1.00 0.06
that . 1 1 0.06 0.06 1.00 0.12
. ⟨/s⟩ 2 2 0.12 0.12 1.00 0.12

unigram probability!

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 28 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Sentence probability: bigram vs. unigram

I ’m sorry , Dave . ⟨/s⟩
0

0.5

1 Unigram
Bigram

Puni(⟨s⟩ I ’m sorry , Dave . ⟨/s⟩) = 2.83× 10−9

Pbi(⟨s⟩ I ’m sorry , Dave . ⟨/s⟩) = 0.33

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 29 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Unigram vs. bigram probabilities
in sentences and non-sentences

w I ’m sorry , Dave .

Puni 0.20 0.13 0.07 0.07 0.07 0.07 2.83× 10−9

Pbi 1.00 0.67 0.50 1.00 1.00 1.00 0.33

w , ’m I . sorry Dave

Puni 0.07 0.13 0.20 0.07 0.07 0.07 2.83× 10−9

Pbi 0.00 0.00 0.00 0.00 0.00 1.00 0.00

w I ’m afraid , Dave .

Puni 0.07 0.13 0.07 0.07 0.07 0.07 2.83× 10−9

Pbi 1.00 0.67 0.50 0.00 0.50 1.00 0.00

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 30 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Bigram model as a finite-state automaton

⟨s⟩ I

’m

can

sorry

afraid

, Dave

. ⟨/s⟩

’t do that

1.0

0.6
7

0.33

1.0

1.0 1.0

1
.0

1.0

1
.0

1.01.0

0.
5

0.5

1.0

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 31 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Trigrams

⟨s⟩ ⟨s⟩ I ’m sorry , Dave . ⟨/s⟩
⟨s⟩ ⟨s⟩ I ’m afraid I can ’t do that . ⟨/s⟩

Trigram counts

ngram freq ngram freq ngram freq

⟨s⟩ ⟨s⟩ I 2 do that . 1 that . ⟨/s⟩ 1

⟨s⟩ I ’m 2 I ’m sorry 1 ’m sorry , 1

sorry , Dave 1 , Dave . 1 Dave . ⟨/s⟩ 1

I ’m afraid 1 ’m afraid I 1 afraid I can 1

I can ’t 1 can ’t do 1 ’t do that 1

• How many n-grams are there in a sentence of length m?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 32 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Trigram probabilities of a sentence

I ’m sorry , Dave . ⟨/s⟩
0

0.5

1 Unigram
Bigram
Trigram

Puni(I ’m sorry , Dave . ⟨/s⟩) = 2.83× 10−9

Pbi(I ’m sorry , Dave . ⟨/s⟩) = 0.33

Ptri(I ’m sorry , Dave . ⟨/s⟩) = 0.50

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 33 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Short detour: colorless green ideas

But it must be recognized that the notion ’probability of a
sentence’ is an entirely useless one, under any known
interpretation of this term. — Chomsky (1968)

• The following ‘sentences’ are categorically different:
– Furiously sleep ideas green colorless
– Colorless green ideas sleep furiously

• Can n-gram models model the difference?
• Should n-gram models model the difference?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 34 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

What do n-gram models model?

• Some morphosyntax: the bigram ‘ideas are’ is (much
more) likely than ‘ideas is’

• Some semantics: ‘bright ideas’ is more likely than ‘green
ideas’

• Some cultural aspects of everyday language: ‘Chinese
food’ is more likely than ‘British food’

• more aspects of ‘usage’ of language

N-gram models are practical tools, and they have been
useful for many tasks.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 35 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-grams, so far …

• N-gram language models are one of the basic tools in NLP
• They capture some linguistic (and non-linguistic)

regularities that are useful in many applications
• The idea is to estimate the probability of a sentence based

on its parts (sequences of words)
• N-grams are n consecutive units in a sequence
• Typically, we use sequences of words to estimate sentence

probabilities, but other units are also possible: characters,
phonemes, phrases, …

• For most applications, we introduce sentence boundary
markers

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 36 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

How to test n-gram models?

Extrinsic: improvement of the target application due to the
language model:

• Speech recognition accuracy
• BLEU score for machine translation
• Keystroke savings in predictive text

applications
Intrinsic: the higher the probability assigned to a test set

better the model. A few measures:
• Likelihood
• (cross) entropy
• perplexity

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 37 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Training and test set division

• We (almost) never use a statistical (language) model on the
training data

• Testing a model on the training set is misleading: the
model may overfit the training set

• Always test your models on a separate test set

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 38 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Intrinsic evaluation metrics: likelihood

• Likelihood of a model M is the probability of the (test) set
w given the model

L(M |w) = P(w |M) =
∏
s∈w

P(s)

• The higher the likelihood (for a given test set), the better
the model

• Likelihood is sensitive to the test set size
• Practical note: (minus) log likelihood is used more

commonly, because of ease of numerical manipulation

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 39 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Intrinsic evaluation metrics: cross entropy

• Cross entropy of a language model on a test set w is

H(w) = −
1

N

∑
wi

log2 P̂(wi)

• The lower the cross entropy, the better the model
• Cross entropy is not sensitive to the test-set size

Reminder: Cross entropy is the bits required to encode the
data coming from a P using an approximate distribution P̂.

H(P,Q) = −
∑
x

P(x) log P̂(x)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 40 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Intrinsic evaluation metrics: perplexity

• Perplexity is a more common measure for evaluating
language models

PP(w) = 2H(w) = P(w)−
1
N = N

√
1

P(w)

• Perplexity is the average branching factor
• Similar to cross entropy

– lower better
– not sensitive to test set size

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 41 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

What do we do with unseen n-grams?
…and other issues with MLE estimates

• Words (and word sequences) are distributed according to
the Zipf’s law: many words are rare.

• MLE will assign 0 probabilities to unseen words, and
sequences containing unseen words

• Even with non-zero probabilities, MLE overfits the training
data

• One solution is smoothing: take some probability mass
from known words, and assign it to unknown words

seen seen

unseen

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 42 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Smoothing: what is in the name?
samples from N(0, 1)

0

0.5

1 5 samples

0

0.2

0.4

0.6

0.810 samples

−4 −2 0 2 4

0

0.2

0.4

0.6 30 samples

−4 −2 0 2 4

0

0.2

0.41000 samples

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 43 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Laplace smoothing
(Add-one smoothing)

• The idea (from 1790): add one to all counts
• The probability of a word is estimated by

P+1(w) =
C(w)+1

N+V

N number of word tokens
V number of word types - the size of the vocabulary

• Then, probability of an unknown word is:

0+ 1

N+ V

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 44 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Laplace smoothing
for n-grams

• The probability of a bigram becomes

P+1(wiwi−1) =
C(wiwi−1)+1

N+V2

• and, the conditional probability

P+1(wi |wi−1) =
C(wi−1wi)+1

C(wi−1)+V

• In general

P+1(w
i
i−n+1) =

C(wi
i−n+1) + 1

N+ Vn

P+1(w
i
i−n+1 |wi−1

i−n+1) =
C(wi

i−n+1) + 1

C(wi−1
i−n+1) + V

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 45 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Bigram probabilities
non-smoothed vs. Laplace smoothing

w1w2 C+1 PMLE(w1w2) P+1(w1w2) PMLE(w2 |w1) P+1(w2 |w1)

⟨s⟩ I 3 0.118 0.019 1.000 0.188
I ’m 3 0.118 0.019 0.667 0.176
’m sorry 2 0.059 0.012 0.500 0.125
sorry , 2 0.059 0.012 1.000 0.133
, Dave 2 0.059 0.012 1.000 0.133
Dave . 2 0.059 0.012 1.000 0.133
’m afraid 2 0.059 0.012 0.500 0.125
afraid I 2 0.059 0.012 1.000 0.133
I can 2 0.059 0.012 0.333 0.118
can ’t 2 0.059 0.012 1.000 0.133
n’t do 2 0.059 0.012 1.000 0.133
do that 2 0.059 0.012 1.000 0.133
that . 2 0.059 0.012 1.000 0.133
. ⟨/s⟩ 3 0.118 0.019 1.000 0.188∑

1.000 0.193

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 46 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

MLE vs. Laplace probabilities
bigram probabilities in sentences and non-sentences

w I ’m sorry , Dave . ⟨/s⟩

PMLE 1.00 0.67 0.50 1.00 1.00 1.00 1.00 0.33
P+1 0.25 0.23 0.17 0.18 0.18 0.18 0.25 1.44× 10−5

w , ’m I . sorry Dave ⟨/s⟩

PMLE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P+1 0.08 0.09 0.08 0.08 0.08 0.09 0.09 3.34× 10−8

w I ’m afraid , Dave . ⟨/s⟩

Puni 1.00 0.67 0.50 0.00 1.00 1.00 1.00 0.00
Pbi 0.25 0.23 0.17 0.09 0.18 0.18 0.25 7.22× 10−6

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 47 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

How much mass does +1 smoothing steal?

• Laplace smoothing
reserves probability mass
proportional to the size of
the vocabulary

• This is just too much for
large vocabularies and
higher order n-grams

• Note that only very few of
the higher level n-grams
(e.g., trigrams) are possible

unseen (3.33%)

seen

Unigrams

unseen (83.33%)

seen

Bigrams

unseen (98.55%)

seen

Trigrams

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 48 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Lidstone correction
(Add-α smoothing)

• A simple improvement over Laplace smoothing is adding
0 < α (and typically < 1) instead of 1

P+α(w
i
i−n+1 |wi−1

i−n+1) =
C(wi

i−n+1) + α

C(wi−1
i−n+1) + αV

• With smaller α values, the model behaves similar to MLE,
it overfits: it has high variance

• Larger α values reduce overfitting/variance, but result in
large bias

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 49 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

How do we pick a good α value
setting smoothing parameters

• We want α value that works best outside the training data
• Peeking at your test data during training/development is

wrong
• This calls for another division of the available data: set

aside a development set for tuning hyperparameters
• Alternatively, we can use k-fold cross validation and take

the α with the best average score

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 50 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Absolute discounting

ϵ

• An alternative to the additive smoothing is to reserve an
explicit amount of probability mass, ϵ, for the unseen
events

• The probabilities of known events has to be re-normalized
• How do we decide what ϵ value to use?

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 51 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Good-Turing smoothing
‘discounting’ view

• Estimate the probability mass to be reserved for the novel
n-grams using the observed n-grams

• Novel events in our training set is the ones that occur once

p0 =
n1

n

where n1 is the number of distinct n-grams with frequency
1 in the training data

• Now we need to discount this mass from the higher counts
• The probability of an n-gram that occurred r times in the

corpus is
(r+ 1)

nr+1

nrn

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 52 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Some terminology
frequencies of frequencies and equivalence classes

I

’m

. ’t ,

Da
ve

af
ra

id ca
n do

so
rr

y

th
at

0

1

2

3

n3 = 1

n2 = 2

n1 = 8

3

2 2

1 1 1 1 1 1 1 1

• We often put n-grams into equivalence classes
• Good-Turing forms the equivalence classes based on

frequency

Note:
n =

∑
r

r× nr

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 53 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Good-Turing estimation: leave-one-out justification

• Leave each n-gram out
• Count the number of times the left-out n-gram had

frequency r in the remaining data
– novel n-grams

n1

n

– n-grams with frequency 1 (singletons)

(1+ 1)
n2

n1n

– n-grams with frequency 2 (doubletons)*

(2+ 1)
n3

n2n

* Yes, this seems to be a word.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 54 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Adjusted counts

Sometimes it is instructive to see the ‘effective count’ of an
n-gram under the smoothing method.
For Good-Turing smoothing, the updated count, r∗ is

r∗ = (r+ 1)
nr+1

nr

• novel items: n1

• singletons: 2×n2

n1

• doubletons: 3×n3

n2

• …

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 55 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Good-Turing example

I

’m

. ’t ,

Da
ve

af
ra

id ca
n do

so
rr

y

th
at

0

1

2

3

n3 = 1

n2 = 2

n1 = 8

3

2 2

1 1 1 1 1 1 1 1

PGT (the) = PGT (a) = . . . =
8

15

PGT (that) = PGT (do) = . . . =
2× 2

15

PGT (’m) = PGT (.) =
3× 1

15

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 56 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Issues with Good-Turing discounting
With some solutions

• Zero counts: we cannot assign probabilities if nr+1 = 0

• The estimates of some of the frequencies of frequencies are
unreliable

• A solution is to replace nr with smoothed counts zr
• A well-known technique (simple Good-Turing) for

smoothing nr is to use linear interpolation

log zr = a+ b log r

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 57 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-grams, so far …

• Two different ways of evaluating n-gram models:
Extrinsic success in an external application
Intrinsic likelihood, (cross) entropy, perplexity

• Intrinsic evaluation metrics often correlate well with the
extrinsic metrics

• Test your n-grams models on an ‘unseen’ test set

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 58 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

N-grams, so far …

• Smoothing methods solve the zero-count problem (also
reduce the variance)

• Smoothing takes away some probability mass from the
observed n-grams, and assigns it to unobserved ones

– Additive smoothing: add a constant α to all counts
• α = 1 (Laplace smoothing) simply adds one to all counts –

simple but often not very useful
• A simple correction is to add a smaller α, which requires

tuning over a development set
– Discounting removes a fixed amount of probability mass, ϵ,

from the observed n-grams
• We need to re-normalize the probability estimates
• Again, we need a development set to tune ϵ

– Good-Turing discounting reserves the probability mass to
the unobserved events based on the n-grams seen only
once: p0 = n1

n

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 59 / 81

https://en.wiktionary.org/wiki/doubleton

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Not all (unknown) n-grams are equal

• Let’s assume that black squirrel is an unknown bigram
• How do we calculate the smoothed probability

P+1(squirrel | black) =
0+ 1

C(black) + V

• How about black wug?

P+1(black wug) = P+1(wug | black) =
0+ 1

C(black) + V

• Would it make a difference if we used a better smoothing
method (e.g., Good-Turing?)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 60 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Back-off and interpolation

The general idea is to fall-back to lower order n-gram
when estimation is unreliable

• Even if,

C(black squirrel) = C(black wug) = 0

it is unlikely that

C(squirrel) = C(wug)

in a reasonably sized corpus

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 61 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Back-off

Back-off uses the estimate if it is available, ‘backs off’ to the lower
order n-gram(s) otherwise:

P(wi |wi−1) =

{
P∗(wi |wi−1) if C(wi−1wi) > 0

αP(wi) otherwise

where,
• P∗(·) is the discounted probability
• α makes sure that

∑
P(w) is the discounted amount

• P(wi), typically, smoothed unigram probability

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 62 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Interpolation

Interpolation uses a linear combination:

Pint(wi |wi−1) = λP(wi |wi−1) + (1− λ)P(wi)

In general (recursive definition),

Pint(wi |w
i−1
i−n+1) = λP(wi |w

i−1
i−n+1) + (1− λ)Pint(wi |w

i−1
i−n+2)

•
∑

λi = 1

• Recursion terminates with
– either smoothed unigram counts
– or uniform distribution 1

V

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 63 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Not all contexts are equal

• Back to our example: given both bigrams
– black squirrel
– wuggy squirrel

are unknown, the above formulations assign the same
probability to both bigrams

• To solve this, the back-off or interpolation parameters
(α or λ) are often conditioned on the context

• For example,

Pint(wi |w
i−1
i−n+1) = λwi−1

i−n+1
P(wi |w

i−1
i−n+1)

+ (1− λwi−1
i−n+1

)Pint(wi |w
i−1
i−n+2)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 64 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Katz back-off
A popular back-off method is Katz back-off:

PKatz(wi|w
i−1
i−n+1) =

{
P∗(wi |w

i−1
i−n+1) if C(wi

i−n+1) > 0

αwi−1
i−n+1

Pkatz(wi |w
i−1
i−n+2) otherwise

• P∗(·) is the Good-Turing discounted probability estimate
(only for n-grams with small counts)

• αwi−1
i−n+1

makes sure that the back-off probabilities sum to
the discounted amount

• α is high for frequent contexts. So, hopefully,

αblackP(squirrel) > αwuggyP(squirrel)
P(squirrel | black) > P(squirrel | wuggy)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 65 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

A quick summary
Markov assumption

• Our aim is to assign probabilities to sentences
P(I ’m sorry , Dave .) = ?

Problem: We cannot just count & divide
– Most sentences are rare: no (reliable) way to count their

occurrences
– Sentence-internal structure tells a lot about it’s probability

Solution: Divide up, simplify with a Markov assumption
P(I ’m sorry , Dave) =

P(I | ⟨s⟩)P(’m | I)P(sorry | ’m)P(, | sorry)P(Dave | ,)P(. | Dave)P(⟨/s⟩ | .)
Now we can count the parts (n-grams), and estimate their
probability with MLE.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 66 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

A quick summary
Smoothing

Problem The MLE assigns 0 probabilities to unobserved n-grams,
and any sentence containing unobserved n-grams. In
general, it overfits

Solution Reserve some probability mass for unobserved n-grams
Additive smoothing add α to every count

P+α(w
i
i−n+1 |wi−1

i−n+1) =
C(wi

i−n+1) + α

C(wi−1
i−n+1) + αV

Discounting – reserve a fixed amount of probability mass to
unobserved n-grams

– normalize the probabilities of observed
n-grams

(e.g., Good-Turing smoothing)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 67 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

A quick summary
Back-off & interpolation

Problem if unseen we assign the same probability for
– black squirrel
– black wug

Solution Fall back to lower-order n-grams when you cannot
estimate the higher-order n-gram

Back-off

P(wi |wi−1) =

{
P∗(wi |wi−1) if C(wi−1wi) > 0

αP(wi) otherwise

Interpolation
Pint(wi |wi−1) = λP(wi |wi−1) + (1− λ)P(wi)

Now P(squirrel) contributes to P(squirrel |black),
it should be higher than P(wug | black).

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 68 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

A quick summary
Problems with simple back-off / interpolation

Problem if unseen, we assign the same probability for
– black squirrel
– wuggy squirrel

Solution make normalizing constants (α, λ) context dependent,
higher for context n-grams that are more frequent

Back-off

P(wi |wi−1) =

{
P∗(wi |wi−1) if C(wi−1wi) > 0

αi−1P(wi) otherwise

Interpolation
Pint(wi |wi−1) = P∗(wi |wi−1) + λwi−1

P(wi)

Now P(black) contributes to P(squirrel | black), it
should be higher than P(wuggy | squirrel).

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 69 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Kneser-Ney interpolation: intuition

• Use absolute discounting for the higher order n-gram
• Estimate the lower order n-gram probabilities based on the

probability of the target word occurring in a new context
• Example:

I can't see without my reading .
• It turns out the word Francisco is more frequent than

glasses (in the typical English corpus, PTB)
• But Francisco occurs only in the context San Francisco
• Assigning probabilities to unigrams based on the number

of unique contexts they appear makes glasses more likely

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 70 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Kneser-Ney interpolation
for bigrams

PKN(wi |wi−1) =
C(wi−1wi) −D

C(wi)
+λwi−1

|{v | C(vwi) > 0}|∑
w | {v | C(vw) > 0}|

Absolute discount

Unique contexts wi appears

All unique contexts

• λs make sure that the probabilities sum to 1

• The same idea can be applied to back-off as well
(interpolation seems to work better)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 71 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Some shortcomings of the n-gram language models

The n-gram language models are simple and successful, but …
• They are highly sensitive to the training data: you do not

want to use an n-gram model trained on business news for
medical texts

• They cannot handle long-distance dependencies:
In the last race, the horse he bought last year
finally .

• The success often drops in morphologically complex
languages

• The smoothing methods are often ‘a bag of tricks’

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 72 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Cluster-based n-grams

• The idea is to cluster the words, and fall-back (back-off or
interpolate) to the cluster

• For example,
– a clustering algorithm is likely to form a cluster containing

words for food, e.g., {apple, pear, broccoli, spinach}
– if you have never seen eat your broccoli, estimate

P(broccoli|eat your) = P(FOOD|eat your)×P(broccoli|FOOD)

• Clustering can be
hard a word belongs to only one cluster (simplifies the model)
soft words can be assigned to clusters probabilistically (more

flexible)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 73 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Skipping

• The contexts
– boring | the lecture was
– boring | (the) lecture yesterday was

are completely different for an n-gram model
• A potential solution is to consider contexts with gaps,

‘skipping’ one or more words
• We would, for example model P(e | abcd) with a

combination (e.g., interpolation) of
– P(e | abc_)
– P(e | ab_d)
– P(e | a_cd)
– …

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 74 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Modeling sentence types

• Another way to improve a language model is to condition
on the sentence types

• The idea is different types of sentences (e.g., ones related to
different topics) have different behavior

• Sentence types are typically based on clustering
• We create multiple language models, one for each sentence

type
• Often a ‘general’ language model is used, as a fall-back

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 75 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Caching

• If a word is used in a document, its probability of being
used again is high

• Caching models condition the probability of a word, to a
larger context (besides the immediate history), such as

– the words in the document (if document boundaries are
marked)

– a fixed window around the word

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 76 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Structured language models

• Another possibility is using a generative parser
• Parsers try to explicitly model (good) sentences
• Parser naturally capture long-distance dependencies
• Parsers require much more computational resources than

the n-gram models
• The improvements are often small (if any)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 77 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Maximum entropy models

• We can fit a logistic regression ‘max-ent’ model predicting
P(w | context)

• Main advantage is to be able to condition on arbitrary
features

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 78 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Neural language models

• A neural network can be trained to predict a word from its
context

• Then we can use the network for estimating the
P(w | context)

• In the process, the hidden layer(s) of a network will learn
internal representations for the word

• These representations, known as embeddings, are
continuous representations that place similar words in the
same neighborhood in a high-dimensional space

• We will return to embeddings later in this course

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 79 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Some notes on implementation

• The typical use of n-gram models are on (very) large
corpora

• We often need care for numeric instability issues:
– For example, often it is more convenient to work with ‘log

probabilities’
– Sometimes (log) probabilities are ’binned’ into integers,

stored with small number of bits in memory
• Memory or storage may become a problem too

– Assuming words below a frequency are ‘unknown’ often
helps

– Choice of correct data structure becomes important,
– A common data structure is a trie or a suffix tree

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 80 / 81

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Summary

• We want to assign probabilities to sentences
• N-gram language models do this by

– estimating probabilities of parts of the sentence (n-grams)
– use the n-gram probability and a conditional independence

assumption to estimate the probability of the sentence

• MLE estimate for n-gram overfit
• Smoothing is a way to fight overfitting
• Back-off and interpolation yields better ‘smoothing’
• There are other ways to improve n-gram models, and

language models without (explicitly) use of n-grams

Next:
Today POS tagging

Mon/Fri Statistical parsing

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 81 / 81

Additional reading, references, credits

• Textbook reference: Jurafsky and Martin (2009, chapter 4)
(draft chapter for the 3rd version is also available). Some of
the examples in the slides come from this book.

• Chen and J. Goodman (1998) and Chen and J. Goodman
(1999) include a detailed comparison of smoothing
methods. The former (technical report) also includes a
tutorial introduction

• J. T. Goodman (2001) studies a number of improvements to
(n-gram) language models we have discussed. This
technical report also includes some introductory material

• Gale and Sampson (1995) introduce the ‘simple’
Good-Turing estimation noted on Slide 19. The article also
includes an introduction to the basic method.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 A.1

Additional reading, references, credits (cont.)
• The quote from 2001: A Space Odyssey, ‘I’m sorry Dave. I’m

afraid I can’t do it.’ is probably one of the most frequent
quotes in the CL literature. It was also quoted, among
many others, by Jurafsky and Martin (2009).

• The HAL9000 camera image on page 19 is from Wikipedia,
(re)drawn by Wikipedia user Cryteria.

• The Herman comic used in slide 4 is also a popular
example in quite a few lecture slides posted online, it is
difficult to find out who was the first.

• The smoothing visualization on slide ?? inspired by Julia
Hockenmaier’s slides.

Chen, Stanley F and Joshua Goodman (1998). An empirical study of smoothing techniques for language modeling.
Tech. rep. TR-10-98. Harvard University, Computer Science Group. url:
https://dash.harvard.edu/handle/1/25104739.

— (1999). “An empirical study of smoothing techniques for language modeling”. In: Computer speech & language
13.4, pp. 359–394.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 A.2

http://web.stanford.edu/~jurafsky/slp3/4.pdf
https://en.wikipedia.org/wiki/HAL_9000
https://dash.harvard.edu/handle/1/25104739

Additional reading, references, credits (cont.)

Chomsky, Noam (1968). “Quine’s empirical assumptions”. In: Synthese 19.1, pp. 53–68. doi: 10.1007/BF00568049.

Gale, William A and Geoffrey Sampson (1995). “Good-Turing frequency estimation without tears”. In: Journal of
Quantitative Linguistics 2.3, pp. 217–237.

Goodman, Joshua T (2001). A bit of progress in language modeling extended version. Tech. rep. MSR-TR-2001-72.
Microsoft Research.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. isbn:
978-0-13-504196-3.

Shillcock, Richard (1995). “Lexical Hypotheses in Continuous Speech”. In: Cognitive Models of Speech Processing.
Ed. by Gerry T. M. Altmann. MIT Press.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 A.3

http://dx.doi.org/10.1007/BF00568049

	Statistical Natural Language Processing
	Motivation
	N-gram language models
	N-grams in practice: spelling correction
	N-grams in practice: speech recognition
	Speech recognition gone wrong
	Speech recognition gone wrong
	Speech recognition gone wrong
	Speech recognition gone wrong
	What went wrong?
	N-grams in practice: machine translation
	N-grams in practice: predictive text
	N-grams in practice: predictive text
	More applications for language models

	MLE estimation
	Our aim
	Assigning probabilities to sentences
	Assigning probabilities to sentences
	Example: applying the chain rule
	Assigning probabilities to sentences
	Example: bigram probabilities of a sentence
	Maximum-likelihood estimation (MLE)
	MLE estimation of an n-gram language model
	Unigrams
	Unigram probability of a sentence
	N-gram models define probability distributions
	Unigram probabilities
	Unigram probabilities in a (slightly) larger corpus
	Zipf's law – a short divergence
	Bigrams
	Sentence boundary markers
	Calculating bigram probabilities
	Bigram probabilities
	Sentence probability: bigram vs. unigram
	Unigram vs. bigram probabilities
	Bigram model as a finite-state automaton
	Trigrams
	Trigram probabilities of a sentence

	Evaluating n-gram models
	How to test n-gram models?
	Training and test set division
	Intrinsic evaluation metrics: likelihood
	Intrinsic evaluation metrics: cross entropy
	Intrinsic evaluation metrics: perplexity

	Smoothing
	What do we do with unseen n-grams?
	Smoothing: what is in the name?
	Laplace smoothing
	Laplace smoothing
	Bigram probabilities
	MLE vs. Laplace probabilities
	How much mass does +1 smoothing steal?
	Lidstone correction
	How do we pick a good value
	Absolute discounting
	Good-Turing smoothing
	Some terminology
	Good-Turing estimation: leave-one-out justification
	Adjusted counts
	Good-Turing example
	Issues with Good-Turing discounting

	Back-off & Interpolation
	Not all (unknown) n-grams are equal
	Back-off and interpolation
	Back-off
	Interpolation
	Not all contexts are equal
	Katz back-off
	A quick summary
	A quick summary
	A quick summary
	A quick summary
	Kneser-Ney interpolation: intuition
	Kneser-Ney interpolation

	Extensions, advanced topics
	Cluster-based n-grams
	Skipping
	Modeling sentence types
	Caching
	Structured language models
	Maximum entropy models
	Neural language models

