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Practical matters Overview Linear algebra Derivatives & integrals Summary

Some practical remarks
(recap)

• Course web page:
http://sfs.uni-tuebingen.de/~ccoltekin/courses/snlp

• Please complete Assignment 0
• Assignment 1 will be released this week

• Reminder: there are Easter eggs (in the version presented
in the class)
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Today’s lecture

• Some concepts from linear algebra
• A (very) short refresher on

– Derivatives: we are interested in maximizing/minimizing
(objective) functions (mainly in machine learning)

– Integrals: mainly for probability theory

This is only a high-level, informal introduction/refresher.
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Linear algebra
Linear algebra is the field of mathematics that studies vectors and
matrices.

• A vector is an ordered sequence of numbers

v = (6, 17)

• A matrix is a rectangular arrangement of numbers

A =

[
2 1

1 4

]
• A well-known application of linear algebra is solving a set

of linear equations

2x1 + x2 = 6

x1 + 4x2 = 17
⇐⇒ [

2 1

1 4

]
×
[
x1
x2

]
=

[
6

17

]
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Why study linear algebra?

Consider an application counting words in a document

the and of to in …

(document1

121 106 91 83 43 …

)

document2 142 136 86 91 69 …
document3 107 94 41 47 33 …

… … … … … …
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Consider an application counting words in multiple documents

the and of to in …

(
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You should already be seeing vectors and matrices here.
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Why study linear algebra?

• Insights from linear algebra are helpful in understanding
many NLP methods

• In machine learning, we typically represent input, output,
parameters as vectors or matrices

• It makes notation concise and manageable
• In programming, many machine learning libraries make

use of vectors and matrices explicitly
• In programming, vector-matrix operations correspond to

loops
• ‘Vectorized’ operations may run much faster on GPUs, and

on modern CPUs
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Vectors

• A vector is an ordered list of
numbers v = (v1, v2, . . . vn),

• The vector of n real numbers is said
to be in vector space Rn (v ∈ Rn)

• In this course we will only work
with vectors in Rn

• Typical notation for vectors:

v = v⃗ = (v1, v2, v3) = ⟨v1, v2, v3⟩ =

v1v2
v3


• Vectors are (geometric) objects with

a magnitude and a direction

dire
cti

on

mag
nit

ude
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Geometric interpretation of vectors

• Vectors (in a linear space)
are represented with
arrows from the origin

• The endpoint of the vector
v = (v1, v2) correspond to
the Cartesian coordinates
defined by v1, v2

• The intuitions often (!)
generalize to higher
dimensional spaces

(1, 1)

(1, 3)

(−1,−3)
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Vector norms

• The norm of a vector is an indication of its size (magnitude)
• The norm of a vector is the distance from its tail to its tip
• Norms are related to distance measures
• Vector norms are particularly important for understanding

some machine learning techniques
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L2 norm

• Euclidean norm, or L2 (or
L2) norm is the most
commonly used norm

• For v = (v1, v2),

∥v∥2 =
√

v21 + v22

∥(3, 3)∥2 =
√

32 + 32 =
√
18

• L2 norm is often written
without a subscript: ∥v∥

y

x

(3, 3)
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L1 norm

• Another norm we will
often encounter is the L1
norm

∥v∥1 = |v1|+ |v2|

∥(3, 3)∥1 = |3|+ |3| = 6

• L1 norm is related to
Manhattan distance

y

x

(3, 3)
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LP norm

In general, LP norm, is defined as

∥v∥p =

(
n∑

i=1

|vi|
p

) 1
p

We will only work with than L1 and L2 norms, but L0 and L∞
are also common
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Multiplying a vector with a scalar

• For a vector v = (v1, v2)
and a scalar a,

av = (av1,av2)

• multiplying with a scalar
‘scales’ the vector

2v

v = (1, 2)

−0.5v

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 12 / 38



Practical matters Overview Linear algebra Derivatives & integrals Summary

Vector addition and subtraction

For vectors v = (v1, v2) and
w = (w1,w2)

• v+w = (v1 +w1, v2 +w2)

(1, 2) + (2, 1) = (3, 3)

• v−w = v+ (−w)

(1, 2) − (2, 1) = (−1, 1)

v

w

v+w

−w

v−w
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Dot product

• For vectors w = (w1,w2)

and v = (v1, v2),

wv = w1v1 +w2v2

or,

wv = ∥w∥∥v∥ cosα

• The dot product of two
orthogonal vectors is 0

• ww = ∥w∥2

• Dot product may be used
as a similarity measure
between two vectors

v

w
α

∥v∥ c
osα

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 14 / 38



Practical matters Overview Linear algebra Derivatives & integrals Summary

Cosine similarity

• The cosine of the angle between two vectors

cosα =
vw

∥v∥∥w∥

is often used as another similarity metric, called cosine
similarity

• The cosine similarity is related to the dot product, but
ignores the magnitudes of the vectors

• For unit vectors (vectors of length 1) cosine similarity is
equal to the dot product

• The cosine similarity is bounded in range [−1,+1]
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Matrices

A =


a1,1 a1,2 a1,3 . . . a1,m

a2,1 a2,2 a2,3 . . . a2,m
...

...
... . . . ...

an,1 an,2 an,3 . . . an,m


• We can think of matrices as collection of row or column

vectors
• A matrix with n rows and m columns is in Rn×m

• Most operations in linear algebra also generalize to more
than 2-D objects

• A tensor can be thought of a generalization of matrices to
multiple dimensions.
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Transpose of a matrix

Transpose of a n×m matrix is an m× n matrix whose rows are
the columns of the original matrix.
Transpose of a matrix A is denoted with AT .

If A =

a b

c d

e f

, AT =

[
a c e

b d f

]
.
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Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

2

[
2 1

1 4

]
=

[
2× 2 2× 1

2× 1 2× 4

]
=

[
4 2

2 8

]
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Matrix addition and subtraction

Each element is added to (or subtracted from) the
corresponding element[

2 1

1 4

]
+

[
0 1

1 0

]
=

[
2 2

2 4

]
Note:

• Matrix addition and subtraction are defined on matrices of
the same dimension
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Matrix multiplication

• if A is a n× k matrix, and B is a k×m matrix, their
product C is a n×m matrix

• Elements of C, ci,j, are defined as

cij =

k∑
ℓ=0

aiℓbℓj

• Note: ci,j is the dot product of the ith row of A and the jth

column of B
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Matrix multiplication
(demonstration)

a11 a12 . . . a1k

a21 a22 . . . a2k

...
... . . . ...

an1 an2 . . . ank



 ×
b11 b12 . . . b1m

b21 b22 . . . b2m

...
... . . . ...

bk1 bk2 . . . bkm





c11 c12 . . . c1m
c21 c22 . . . c2m

...
... . . . ...

cn1 cn2 . . . cnm



=

c11 = a11b11 + a12b21 + . . .a1kbk1

c12 = a11b12 + a12b22 + . . .a1kbk2c1m = a11b1m + a12b2m + . . .a1kbkmc21 = a21b11 + a22b22 + . . .a2kbk1c22 = a21b12 + a22b22 + . . .a2kbk2c2m = a21b1m + a22b2m + . . .a2kbkmcn1 = an1b11 + an2b22 + . . .ankbk1cn2 = an1b12 + an2b22 + . . .ankbk2cnm = an1b1m + an2b2m + . . .ankbkmcij = ai1b1j + ai2b2j + . . .aikbkj
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Dot product as matrix multiplication

In machine learning literature, the dot product of two vectors is
often written as

wTv

For example, w = (2, 2) and v = (2,−2),

[
2 2

]
×
[
2

−2

]

= 2× 2+ 2× − 2 = 4− 4 = 0

* This notation is somewhat sloppy, since the result of matrix multiplication is not a scalar.
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Outer product

The outer product of two column vectors is defined as

vwT

[
1

2

]
×
[
1 2 3

]
=

[
1 2 3

2 4 6

]
Note:

• The result is a matrix
• The vectors do not have to be the same length
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Identity matrix

• A square matrix in which all the elements of the principal
diagonal are ones and all other elements are zeros, is called
identity matrix and often denoted I1 0 0

0 1 0

0 0 1


• Multiplying a matrix with the identity matrix does not

change the original matrix

IA = A
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Matrix multiplication as transformation

• Multiplying a vector with a matrix transforms the vector
• Result is another vector (possibly in a different vector

space)
• Many operations on vectors can be expressed with

multiplying with a matrix (linear transformations)
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Transformation examples
identity

• Identity transformation maps a vector to itself
• In two dimensions: [

1 0

0 1

]
×
[
x

y

]
=

[
x

y

]
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Transformation examples
stretch along the x axis

[
3 0

0 1

]
×
[
1

2

]
=

[
3

2

] (1, 2) (3, 2)
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Transformation examples
rotation

[
cos θ − sin θ
sin θ cos θ

]
[
0 −1

1 0

]
×
[
1

2

]
=

[
−2

1

]

(1, 2)

(−2, 1)
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Transformation examples
rotation

[
cos θ − sin θ
sin θ cos θ

]
[
0 −1

1 0

]
×
[
1

2

]
=

[
−2

1

]
(1, 2)

(−2, 1)
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Matrix-vector representation of a set of linear
equations

Our earlier example set of linear equations

2x1 + x2 = 6

x1 + 4x2 = 17

can be written as: [
2 1

1 4

]
︸ ︷︷ ︸

W

[
x1
x2

]
︸ ︷︷ ︸

x

=

[
6

17

]
︸︷︷︸

b

One can solve the above equation using Gaussian elimination (we
will not cover it today).
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Inverse of a matrix

Inverse of a square matrix W is defined denoted W−1, and
defined as

WW−1 = W−1W = I

The inverse can be used to solve equation in our previous
example:

Wx = b

W−1Wx = W−1b

Ix = W−1b

x = W−1b
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Determinant of a matrix

∣∣∣∣a b

c d

∣∣∣∣ = ad− bc

The above formula generalizes to higher dimensional matrices
through a recursive definition, but you are unlikely to calculate
it by hand. Some properties:

• A matrix is invertible if it has a non-zero determinant
• A system of linear equations has a unique solution if the

coefficient matrix has a non-zero determinant
• Geometric interpretation of determinant is the (signed)

changed in the volume of a unit (hyper)cube caused by the
transformation defined by the matrix
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Eigenvalues and eigenvectors of a matrix

An eigenvector, v and corresponding eigenvalue, λ, of a matrix A

are defined as
Av = λv

• Eigenvalues an eigenvectors have many applications from
communication theory to quantum mechanics

• A better known example (and close to home) is Google’s
PageRank algorithm

• We will return to them while discussing PCA and SVD
(and maybe more topics/concepts)
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Derivatives

• Derivative of a function f(x) is another function f ′(x)
indicating the rate of change in f(x)

• Alternatively: df
dx

(x), df(x)
dx

• Example from physics: velocity is the derivative of the
position

• Our main interest:
– the points where the derivative is 0 are the stationary points

(maxima / minima / saddle points)
– the derivative evaluated at other points indicate the

direction and steepness of the curve
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Finding minima and maxima of a function

• Many machine learning
problems are set up as
optimization problems:

– Define an error function
– Learning involves

finding the minimum
error

• We search for f ′(x) = 0

• The value of f ′(x) on other
points tell us which
direction to go (and how
fast)

f(x) = x2 − 2x

f ′(1) = 0

f ′(3) = 4

f ′(−0.5) = −3
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Partial derivatives and gradient

• In ML, we are often interested in (error) functions of many
variables

• A partial derivative is derivative of a multi-variate function
with respect to a single variable, noted ∂f

∂x

• A very useful quantity, called gradient, is the vector of
partial derivatives with respect to each variable

∇f(x1, . . . , xn) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
• Gradient points to the direction of the steepest change
• Example: if f(x,y) = x3 + yx

∇f(x,y) =
(
3x2 + y, x

)
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Integrals

• Integral is the reverse of
the derivative
(anti-derivative)

• The indefinite integral of
f(x) is noted
F(x) =

∫
f(x)dx

• We are often interested in
definite integrals∫b

a

f(x)dx = F(b) − F(a).

• Integral gives the area
under the curve
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Numeric integrals & infinite sums

• When integration is not
possible with analytic
methods, we resort to
numeric integration

• This also shows that
integration is ‘infinite
summation’
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Summary & next week

• Some understanding of linear algebra and calculus is
important for understanding many methods in NLP (and
ML)

• See bibliography at the end of the slides if you need a
‘more complete’ refresher/introduction

Wed Python tutorial (continued)
Fri We will do a similar excursion to probability theory
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Further reading

• A classic reference book in the field is Strang (2009)
• Shifrin and Adams (2011) and Farin and Hansford (2014)

are textbooks with a more practical/graphical orientation.
• Cherney, Denton, and Waldron (2013) and Beezer (2014)

are two textbooks that are freely available.
• A well-known (also available online) textbook for calculus

is Strang (1991)
• Form more alternatives, see

http://www.openculture.com/free-math-textbooks

Beezer, Robert A. (2014). A First Course in Linear Algebra. version 3.40. Congruent Press. isbn: 9780984417551. url:
http://linear.ups.edu/.

Cherney, David, Tom Denton, and Andrew Waldron (2013). Linear algebra. math.ucdavis.edu. url:
https://www.math.ucdavis.edu/~linear/.

Farin, Gerald E. and Dianne Hansford (2014). Practical linear algebra: a geometry toolbox. Third edition. CRC Press.
isbn: 978-1-4665-7958-3.
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Further reading (cont.)

Shifrin, Theodore and Malcolm R Adams (2011). Linear Algebra. A Geometric Approach. 2nd. W. H. Freeman. isbn:
978-1-4292-1521-3.

Strang, Gilbert (1991). “Calculus”. In: Wellesley-Cambridge press. url:
https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/.

Strang, Gilbert (2009). Introduction to Linear Algebra, Fourth Edition. 4th ed. Wellesley Cambridge Press. isbn:
9780980232714.
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