
Statistical Natural Language Processing
A refresher on information theory

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft

Summer Semester 2018



Information theory

Information theory

• Information theory is concerned with measurement,
storage and transmission of information

• It has its roots in communication theory, but is applied to
many different fields NLP

• We will revisit some of the major concepts
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Information theory

Noisy channel model

a encoder decoder a

10000010 10010010

noisy
channel

• We want codes that are efficient: we do not want to waste
the channel bandwidth

• We want codes that are resilient to errors: we want to be
able to detect and correct errors

• This simple model has many applications in NLP,
including in speech recognition and machine translations
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Information theory

Coding example
binary coding of an eight-letter alphabet

• We can encode an 8-letter
alphabet with 8 bits using
one-hot representation

• Can we do better than
one-hot coding?

• Can we do even better?

letter code

a 00000001

b 00000010

c 00000100

d 00001000

e 00010000

f 00100000

g 01000000

h 10000000
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Information theory

Self information / surprisal

Self information (or surprisal) associated with an event x is

I(x) = log
1

P(x)
= − log P(x)

• If the event is certain, the information (or surprise)
associated with it is 0

• Low probability (surprising) events have higher information
content

• Base of the log determines the unit of information
2 bits
e nats
10 dit, ban, hartley
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Information theory

Why log?

• Reminder: logarithms transform exponential relations to
linear relations

• In most systems, linear increase in capacity increases
possible outcomes exponentially

– The possible number of strings you can fit into two pages is
exponentially more than one page

– But we expect information to double, not increase
exponentially

• Working with logarithms is mathematically and
computationally more suitable
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Information theory

Entropy

Entropy is a measure of the uncertainty of a random variable:

H(X) = −
∑
x

P(x) log P(x)

• Entropy is the lower bound on the best average code
length, given the distribution P that generates the data

• Entropy is average surprisal: H(X) = E[− log P(x)]

• It generalizes to continuous distributions as well (replace
sum with integral)

Note: entropy is about a distribution,
while self information is about individual events

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 6 / 21



Information theory

Example: entropy of a Bernoulli distribution
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Information theory

Entropy: demonstration
increasing number of outcomes increases entropy

H = − log 1 = 0H = −1
2
log2
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Information theory

Entropy: demonstration
the distribution matters
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Information theory

Back to coding letters

• Can we do better?

• No. H = 3 bits, we need 3

bits on average
• If the probabilities were

different, could we do
better?

• Yes. Now H = 2 bits, we
need 2 bits on average

Uniform distribution has the
maximum uncertainty, hence the
maximum entropy.

letter prob code

a 1
8

000

b 1
8

001

c 1
8

010

d 1
8

011

e 1
8

100

f 1
8

101

g 1
8

110

h 1
8

111
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Information theory

Back to coding letters

• Can we do better?
• No. H = 3 bits, we need 3

bits on average
• If the probabilities were

different, could we do
better?

• Yes. Now H = 2 bits, we
need 2 bits on average

Uniform distribution has the
maximum uncertainty, hence the
maximum entropy.

letter prob code

a 1
2

b 1
4

c 1
8

d 1
16

e 1
64

f 1
64

g 1
64

h 1
64
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Information theory

Back to coding letters

• Can we do better?
• No. H = 3 bits, we need 3

bits on average
• If the probabilities were

different, could we do
better?

• Yes. Now H = 2 bits, we
need 2 bits on average

Uniform distribution has the
maximum uncertainty, hence the
maximum entropy.

letter prob code

a 1
2

0

b 1
4

10

c 1
8

110

d 1
16

1110

e 1
64

111100

f 1
64

111101

g 1
64

111110

h 1
64

111111
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Information theory

Entropy of your random numbers

0 0.1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0.09
0.03

0
0.03

0
0.03
0.06
0.06
0.06
0.06

0.03
0.03

0
0.06
0.09

0.06
0.12

0.03
0.12

0.03 • Entropy of the distribution:

H = −(+ 0.09× log2 0.09

+ 0.03× log2 0.03

+ . . .

+ 0.03× log2 0.03)

= 3.91

• If it was uniformly distributed the
entropy would be,

H = −20× (
1

20
× log2

1

20
) = 4.32
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Information theory

Differential entropy

• Information entropy generalizes to the continuous
distributions

h(X) = −

∫
X

p(x) log p(x)

• The entropy of continuous variables is called differential
entropy

• Differential entropy is typically measures in nats
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Information theory

Example: entropy of length measurements

20 40 60 80
0

2

4

6

8
Correct valueµ = 46.4

• Assuming the data is distributed normally with
N(µ = 46.4,σ = 14.64

h = log2 σ
√
2πe = 5.92bits
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Information theory

Pointwise mutual information

Pointwise mutual information (PMI) between two events is
defined as

PMI(x,y) = log2
P(x,y)

P(x)P(y)

• Reminder: P(x,y) = P(x)P(y) if two events are
independent

PMI
0 if the events are independent
+ if events cooccur more than by chance
− if events cooccur less than by chance

• Pointwise mutual information is symmetric
PMI(X, Y) = PMI(Y,X)

• PMI is often used as a measure of association (e.g.,
between words) in computational/corpus linguistics
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Information theory

Mutual information

Mutual information measures mutual dependence between two
random variables

MI(X, Y) =
∑
x

∑
y

P(x,y) log2
P(x,y)

P(x)P(y)

• MI is the average (expected value of) PMI
• PMI is defined on events, MI is defined on distributions
• Note the similarity with the covariance (or correlation)
• Unlike correlation, mutual information is also defined for

discrete variables
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Information theory

Conditional entropy

Conditional entropy is the entropy of a random variable
conditioned on another random variable.

H(X | Y) =
∑
y∈Y

P(y)H(X | Y = y)

= −
∑

x∈X,y∈Y

P(x,y) log P(x | y)

• H(X | Y) = H(X) if random variables are independent
• Conditional entropy is lower if random variables are

dependent
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Information theory

Entropy, mutual information and conditional entropy

H(X)

H(Y)
H(X | Y)

H(Y | X)

MI(X, Y)

H(X, Y)
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Information theory

Cross entropy
Cross entropy measures entropy of a distribution (P), under
another distribution (Q).

H(P,Q) = −
∑
x

P(x) logQ(x)

• It often arises in the context of approximation:
– if we intend to approximate the true distribution (P) with

an approximation of it (Q)

• It is always larger than H(P): it is the (non-optimum)
average code-length of P coded using Q

• It is a common error function in ML for categorical
distributions

Note: the notation H(X, Y) is also used for joint entropy.
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Information theory

KL-divergence / relative entropy

For two distribution P and Q with same support,
Kullback–Leibler divergence of Q from P (or relative entropy of
P given Q) is defined as

DKL(P∥Q) =
∑
x

P(x) log2
P(x)

Q(x)

• DKL measures the amount of extra bits needed when Q is
used instead of P

• DKL(P∥Q) = H(P,Q) −H(P)

• Used for measuring difference between two distributions
• Note: it is not symmetric (not a distance measure)
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Information theory

Short divergence: distance measure

A distance function, or a metric, satisfies:

• d(x,y) ⩾ 0

• d(x,y) = d(y, x)

• d(x,y) = 0 ⇐⇒ x = y

• d(x,y) ⩽ d(x, z) + d(z,y)

We will use distance measures/metrics often in this course.
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Information theory

Summary

• Information theory has many applications in NLP and ML
• We reviewed a number of important concepts from the

information theory

– Self information
– Pointwise MI
– Cross entropy

– Entropy
– Mutual information
– KL-divergence

Next:
Wed Exercises

Fri ML intro / regression
Mon Classification
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Further reading

• The original article from Shannon (1948), which started the
field, is also quite easy to read.

• MacKay (2003) covers most of the topics discussed, in a
way quite relevant to machine learning. The complete
book is available freely online (see the link below)

MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. isbn:
978-05-2164-298-9. url: http://www.inference.phy.cam.ac.uk/itprnn/book.html.

Shannon, Claude E. (1948). “A mathematical theory of communication”. In: Bell Systems Technical Journal 27,
pp. 379–423, 623–656.
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