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Information theory

Noisy channel model

noisy
channel
tell the truth —>| encoder

decoder |—> smell the soup

« We want codes that are efficient: we do not want to waste
the channel bandwidth

« We want codes that are resilient to errors: we want to be
able to detect and correct errors

o This simple model has many applications in NLP,
including in speech recognition and machine translations
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Information theory

Coding example
binary coding of an eight-letter alphabet

letter code

o We can encode an 8-letter Bl 00000000
alphabet with 8 bits using b 00000001
one-hot representation € 00000010
Can we do better the d 00000011

» Can we do better than o 00000100
one-hot coding? f 00000101

« Can we do even better? g 00000110
h 00000111
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Information theory

Why log?

o Reminder: logarithms transform exponential relations to
linear relations
o In most systems, linear increase in capacity increases
possible outcomes exponentially
— The possible number of strings you can fit into two pages is
exponentially more than one page
— But we expect information to double, not increase
exponentially

o Working with logarithms is mathematically and
computationally more suitable
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Information theory

Information theory

o Information theory is concerned with measurement,
storage and transmission of information

o It has its roots in communication theory, but is applied to
many different fields NLP

o We will revisit some of the major concepts
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Information theory

Coding example
binary coding of an eight-letter alphabet

letter code
o We can encode an 8-letter a 00000001
alphabet with 8 bits using b 00000010
one-hot representation c 00000100
d 00001000

o Can we do better than
-hot coding? e 00010000
o ¥ f 00100000
g 01000000
h 10000000
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Information theory

Self information / surprisal
Self information (or surprisal) associated with an event x is

I(x) =log ﬁ = —log P(x)

o If the event is certain, the information (or surprise)
associated with it is 0

o Low probability (surprising) events have higher information
content
« Base of the log determines the unit of information
2 bits
e nats
10 dit, ban, hartley
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Information theory

Entropy

Entropy is a measure of the uncertainty of a random variable:

H(X) == P(x)logP(x)

o Entropy is the lower bound on the best average code
length, given the distribution P that generates the data

« Entropy is average surprisal: H(X) = E[—log P(x)]
o It generalizes to continuous distributions as well (replace
sum with integral)

Note: entropy is about a distribution,
while self information is about individual events
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Information theory

Example: entropy of a Bernoulli distribution
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P(X=1)

H(X) in bits
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Information theory

Entropy: demonstration

increasing number of outcomes increases entropy

__1 1 1_
H=—5log; 7 —log, 7 =1
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Information theory
Entropy: demonstration
the distribution matters
__1 11 11 11 1
H=—zlog, 7 —zlog, 3 —zlog, 7 —zlogy, 7 =2
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Information theory
Entropy: demonstration
the distribution matters
—_3 3_ 1 1 _ L a1
H=—7log; 3 — 751082 76 — 76 1082 76 — 75 1082 75 = 1.06
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Information theory

Entropy: demonstration

increasing number of outcomes increases entropy

H=—-log1 =0
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Information theory

Entropy: demonstration

increasing number of outcomes increases entropy
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Information theory

Entropy: demonstration

the distribution matters

H:—%103;2%—glogzg—glogzé—%logzé:1.79
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Information theory

Back to coding letters @

« Can we do better?

letter prob code
e No. H = 3 bits, we need 3

bits on average a 1 000
b i 001
c % 010
d 1 on
e 1 100
_ . f 1 101
Uniform distribution has the
max%mum uncertainty, hence the g % 110
maximum entropy.
h 1 111
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Information theory

Back to coding letters @

Can we do better?

No. H = 3 bits, we need 3

letter prob code

bits on average a % 0

o If the probabilities were b 1 10

different, could we do c 1 110
better? ?

o Yes. Now H = 2 bits, we d 16 1110

need 2 bits on average e & 111100

P & 1ol

Uniform distribution has the

maximum uncertainty, hence the g 1 111110
maximum entropy. 64
1

h e 111n
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Information theory

Differential entropy

o Information entropy generalizes to the continuous
distributions

h(X) == | ptx)logpix)

 The entropy of continuous variables is called differential
entropy

« Differential entropy is typically measures in nats
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Information theory

Pointwise mutual information

Pointwise mutual information (PMI) between two events is
defined as Plx.y)
XY
PMI(x,y) = logy ——22"
YT B B gP(y)

« Reminder: P(x,y) = P(x)P(y) if two events are
independent PMI

0 if the events are independent
+ if events cooccur more than by chance
— if events cooccur less than by chance

o Pointwise mutual information is symmetric
PMI(X,Y) = PMI(Y, X)

o PMI is often used as a measure of association (e.g.,
between words) in computational /corpus linguistics
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Information theory

Conditional entropy

Conditional entropy is the entropy of a random variable
conditioned on another random variable.

HX|Y)= ) PyHX|Y=y)
yey
= — Z P(x,y)log P(x|y)
xeX,yeYy

o H(X|Y) = H(X) if random variables are independent

o Conditional entropy is lower if random variables are
dependent
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Information theory

Entropy of your random numbers

o] % 012 o Entropy of the distribution:

18 4 [J0.03 e

17 - : - —

16 0 0'8609 H= (+ 0.09 x log, 0.09
15 !

12 | E70.06 + 0.03 x log, 0.03
1310 + .
| B0 0.03 x log; 0.03
11 - Qo . !

10 -| B2 0.06 * ATl 005
9 4 [ 0.06 = 3.91

3l B

7 !

6+ [0.03 o If it was uniformly distributed the
2] :(‘) 0.03 entropy would be,

3410

T B0 H = —20 x (= x logy ) = 4.32
1 ! =—-20 X (5% X logy 7<) =4.

— 20 20
0 o1
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Information theory

Example: entropy of length measurements

n=46.4 Correct value

Ll

o N B~ O

60 0

o Assuming the data is distributed normally with
N(p=46.4,0=14.64

h = log, 0v2me = 5.92bits
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Information theory

Mutual information

Mutual information measures mutual dependence between two
random variables

MICY) = X 3 Pl o oo
x oy

o Ml is the average (expected value of) PMI
o PMI is defined on events, MI is defined on distributions
« Note the similarity with the covariance (or correlation)

o Unlike correlation, mutual information is also defined for
discrete variables
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Information theory

Entropy, mutual information and conditional entropy

H(X) H(Y | X)
MI(X,Y)
H(XY) -
H(X,Y)
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Information theory

Cross entropy

Cross entropy measures entropy of a distribution (P), under
another distribution (Q).

~Y P(x)logQ(x)

o It often arises in the context of approximation:
- if we intend to approximate the true distribution (P) with
an approximation of it (Q)

o It is always larger than H(P): it is the (non-optimum)
average code-length of P coded using Q

o It is a common error function in ML for categorical
distributions

Note: the notation H(X, Y) is also used for joint entropy.
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Information theory

Short divergence: distance measure

A distance function, or a metric, satisfies:

d(x,y) >
d(x,y) = d( )

d(x,y) =0 &= x=y
) < d(x,2z) +d(z,y)

We will use distance measures/metrics often in this course.

B d(xy
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Further reading

o The original article from Shannon (1948), which started the
field, is also quite easy to read.

« MacKay (2003) covers most of the topics discussed, in a
way quite relevant to machine learning. The complete
book is available freely online (see the link below)

@ MacKay, David J. C. (vnm ). Information Theory, Inference and Learning Algorithms. Cambridge University Press. iso
78-05-2164-298-9. UrL: http: //wuw.inference.phy.can.ac.uk/itprnn/book.html
D Shannon, Claude E. (1948). “A ical theory of ion”. In: Bell Systems Technical Journal 27,

pp. 379-423, 623-656
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Information theory

KL-divergence / relative entropy

For two distribution P and Q with same support,
Kullback-Leibler divergence of Q from P (or relative entropy of
P given Q) is defined as

P(x)

Q(x)

Dy (PIIQ) = ZP x) log;

o Dk measures the amount of extra bits needed when Q is
used instead of P

e Dk (PIQ) =H(P,Q) -
o Used for measuring difference between two distributions
« Note: it is not symmetric (not a distance measure)
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Information theor

Summary

« Information theory has many applications in NLP and ML

o We reviewed a number of important concepts from the
information theory

— Self information
— Pointwise MI

- Entropy
— Mutual information
- KL-divergence

- Cross entropy
Next:
Wed Exercises
Fri ML intro / regression
Mon Classification
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http://www.inference.phy.cam.ac.uk/itprnn/book.html
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