
SNLP assignment 6:
n-gram and RNN language models
Deadline: Aug 8, 2018 @ 10:00 CEST

Why am I doing this?

• Experiment with both the
‘classic’ n-gram language
models and the ‘neural’
(RNN) language models

• Evaluate and compare
different models

• A glimpse at the NLTK
library

This exercise set is about two families of language models, one using
simple and interpolated n-grams, and another using recurrent neural
networks.

We will use the essays written by the class members during as-
signment 0 as training data, which you can find under train/ in
your assignment repository.1 Some of the test files in test/ is also

1 Essays are anonymized by removing
some of the identifying information.

randomly selected from assignment 0 assays. However, there are also
a few short surprise texts in this directory.

Implement both n-gram models (Exercise 2 and Exercise 3) in a
single python script named n-gram.py, and the RNN models in Ex-
ercise 4 as another single python script rnn.py.2 2 Tokenization function (Exercise 1) can

be in one of the files (and used by the
other), or copied in both.

Exercise 1. Word and sentence tokenization (0.5 P.)
Write a function with name tokenize() that takes a variable number
of file names and returns

• a tokenized corpus: a list whose members are sentences which in
turn are lists of tokens

• a vocabulary: an ordered sequence with unique vocabulary items

Your function should convert all tokens to lowercase.
For this exercise, use the default NLTK sentence and word tok-

enizers to tokenize a given text file.

Exercise 2. Ngram language model (1.5 P.)
Implement a simple Ngram class with the following interface.3 3 Do not use any external libraries,

e.g., NLTK, for this exercise. You
are, however, encouraged to check
your results against a well-known
implementation.

This exercise overlaps with one of the
last year’s assignments. You can make
use of two sample solutions provided
in your assignment repository under
sample-code/. However, make sure
that you understand the part of the
code you borrow, and do not include
any code that is not required for the
present exercise.

Ngram() the constructor should accept one required argument, n, the order of
the n-gram model.

update() updates the ngram counts for the given sentence. It should be, for
example, callable like
update(["I", "'m", "sorry", "Dave", ",", "."]).

prob() returns the MLE probability of the given sequence.
sprob() returns the smoothed probability of a given sentence. For bigrams

and higher-order n-grams, use Good-Turing discounting and for un-
igrams use Laplace (add-one) smoothing.4

4 Could you use If you wanted to
use Good-Turing estimation for uni-
grams, how would you distribute the
discounted probability mass to the
unknown events?

ppl() returns the perplexity of the given list of sentences based on their
smoothed probabilities as calculated by sprob().

next() samples a word from the conditional distribution of given context.
For example next(’I’) should return a random word w according
to probability distribution P(w|I). Use the MLE distributions for this
exercise.5 5 What would be the difference if you

used the smoothed estimates of the
distributions?• Print out perplexity scores for all test files, using a unigram, bigram

and trigram model.6 6 What is the upper bound for the
perplexity?• Using each unigram, bigram and trigram models, generate 5 random

sentences with the next() method you wrote.

http://coltekin.net/cagri/courses/snlp2017/snlp-assignment1.pdf
http://coltekin.net/cagri/courses/snlp2017/snlp-assignment1.pdf

assignment 6: language models 2

Exercise 3. Interpolation (1.5 P.)
• Write another Python class that implements an interpolated bigram

model such that,

P(wi|wi−1) = (1− λ)P∗(wi|wi−1) + λP
∗(wi)

where λ is the Good-Turing discount for bigrams, P∗(·) is the smoothed
estimations obtained by the n-gram model implemented in Exer-
cise 2. Your class should implement the same interface as the class
defined in Exercise 2.7

7 The instructions here does not nec-
essarily lead to an efficient implemen-
tation of n-gram models. However,
please follow the specification here
and when there is a choice between
clarity and efficiency, choose clarity.

• Print out perplexity scores for all test files using your interpolated
bigram model.

(optional) Using the interpolated bigram model, generate 5 random sentences.

<s> I am sorry , Dave .

I am sorry , Dave . </s>
Outp

ut

De
ns
e

Si
mp
le
RN
N

Em
be
dd
in
g

In
put

1 model = Sequential((
2 Embedding(vocab_len, 32,
3 mask_zero=True,
4 input_length=max_len),
5 Dropout(0.5),
6 SimpleRNN(64,
7 return_sequences=True),
8 Dropout(0.5),
9 TimeDistributed(

10 Dense(vocab_len,
11 activation='softmax')
12)
13))

Figure 1: A sketch of the RNN lan-
guage model for Exercise 4. vocab_len

is length of the vocabulary, including
start- and end-of-sentence symbols, and
a special symbol for ‘unknown’ words.
You are also recommended not to use 0

for any of the symbols as it will be used
as padding by Keras. max_len is the
maximum sentence length in the train-
ing data. It is presumed here that all
sentences are padded (or truncated) to
this length. Note that for this model,
the input is numeric sequences (each
word is represented by an integer) but
gold-standard output is one-hot vec-
tors. The predictions of the model, at
each time step, will be a categorical
probability distribution over all words
in the vocabulary.

Exercise 4. An RNN language model (2.5 P.)
• Train an RNN model that predicts next word in the sequence.

You are free to build any model of your choice. The model and the
Keras implementation outlined in Figure 1 can be used as a starting
point. Note that unlike the RNN classifier you worked with in in
assignment 5 where you only needed to use the final representation
built for the whole sequence, here you need to use representations at
each time step. The TimeDistributed() ‘wrapper’ on line 9 makes
sure that the dense layer is connected to the output of each time step
of the RNN layer.

You are encouraged to build a better performing model, and tune it
properly. However, it is not required for this exercise.8 Otherwise,

8 How many classes do we have? What
level of accuracy do you expect from
the model? E.g., do you think an
accuracy of 90% achievable? Note that
the achievable accuracy is related to
the expected perplexity.

you can turn the code snippet in Figure 1 to a working example by
processing/reshaping input properly, and (for the next step) under-
standing/using its output.

• Calculate and output the perplexity of the model on each of the test
files.

(optional) Generate and output 5 random sentences from your RNN language
model.

