
SNLP assignment 5:
word class prediction with neural networks
Deadline: Jul 11, 2018 @ 10:00 CEST

Why am I doing this?

• Experiment with a range
of artificial neural network
models

• Compare linear and
non-linear solutions

• Work with sequences, and
the ways to turn them into
features for ANNs

In this set of exercises, we are going to use neural networks for pre-
dicting whether a given word in German is a noun or a verb. As
formulated here, this is a toy example. However, understanding this
simple example well will allow you to apply the methods to many
other NLP tasks.

Data

noun aalstrich

noun abänderung

verb abarbeiten

noun abarbeitung

verb abdrehen

verb abfallen

Figure 1: A short excerpt from the data
to be used in this exercise. All words
are converted to lowercase to make the
classifiers’ task more difficult.

You do not need to re-
implement the standard
library functions (from Keras,
sklearn, numpy, . . . ) for any of
the tasks in this assignment.

The data for this exercise is from from the TüBA-D/Z treebank. Data
is presented in two compressed tab-separated files, train.txt.gz

and test.txt.gz. The first field in the data files is the word class
(noun or verb) and the second field is the word itself. A short seg-
ment from the data file is presented in Figure 1. You should use
train.txt.gz for training and development, and test.txt.gz only
for testing (for comparing results from different models).

The exercises below should be implemented as a single Python
script, word-class.py. Recommended variable names for some of
the data structures are printed on the left margin, and referred to
with this name in instructions that follow. For exercises where you
are asked to print out some information, you should just print them
to the console (e.g., use the print() function). You do not need
to write down the answers to the questions on the right margin, but
trying to find the answers to these questions will help understanding
the methods better. For these exercises, you are recommended to use
use the Keras library.1 Please contact the instructors if you are keen 1 Keras web site, https://keras.io/,

contains quick tutorials that you
may find useful to go through before
working on this set of exercises.
Please also note that installing Keras
and required back end libraries may
take some effort in some computing
environments. You are recommended
to start early.

on using another library.

Exercises

Exercise 1. Data preprocessing, encoding
Read the training and test files, into two lists (each): a list containing
the labels (noun or verb) and a list corresponding words.

train_y Convert the training label sequence to sequences of zeros and ones
(arbitrarily mapping one of the labels to 0, the other to 1). Use the
variable name train_y for the resulting list.

train_x Map each Unicode character in the training words to a unique inte-
ger and each word to a list of integers that correspond to sequences
of characters they are composed of. Reserve an integer value for
‘unknown’ characters. Pad the numeric sequences corresponding to
words, such that they are the same length as the longest word, and
prepended by 0s when necessary. Use the variable name train_x for
the resulting list.

http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora/tueba-dz.html
https://keras.io/
https://keras.io/


assignment 5: word class prediction with anns 2

TIP: you can use keras.preprocessing.sequence.pad_sequences. The
resulting array should have as many rows as the training instances,
and the number of columns should be the length of the longest se-
quence.

test_y Convert the test label sequence to an array of 0 and 1. Following the
same convention as the training set.

test_x Convert your test words similar to the train_x. Note that you should
use the same mapping as in the training words, using the ‘unknown’
for the characters that are not observed in the training set.

train_onehot

test_onehot Create versions of training and test sequences, where each charac-
ter is encoded using one-hot encoding. TIP: resulting one-hot arrays
should be two dimensional, with same number of rows and the num-
ber of columns equal to the size length as the longest word times the
number of unique characters (including unknown).

Exercise 2. Simple feed-forward network (MLP)
Train (and tune) a multi-layer perceptron (MLP) model using
train_onehot as input and train_y as output. Use a single hidden
(dense) layer of size 64 with relu activation function, and use drop-

Some tips on Exercise 2 (and
later exercises):

• The type and number of units
at the final layer, as well as
the error function is deter-
mined by the fact that we are
doing binary classification.
Hence, you should use a sin-
gle ‘sigmoid’ unit at the final
layer.

• fit() function of Keras mod-
els have a validation_split

parameter which may be
handy for automatically
splitting part of the data as
development/validation set.

• Although there are no set
rules, adam is a good default
as optimizer.

• Again, the choice of batch size
depends on the data/model.
It should mainly affect the
training/test time, but may
also affect the accuracy of
your model. You can choose a
batch_size of 32.

Although not required for
this exercise, you are recom-
mended to experiment with
other options: e.g., different
activation functions, number
of units, or layers.

out after the hidden layer. Tune your model to pick the best drop-out
rate (between 0.1 and 0.9), and the best epoch value (up to 30).2

2 You are recommended to tune the
model hyperparameters automatically,
but manually trying a few options is
also fine.

With the model you tuned, print out macro-averaged precision,
recall and F-score, and accuracy on the test set.3

3 Is accuracy a good metric here? Why
(not)? Is your model doing well, or
doing anything useful at all? Would
you get better or worse performance
if you used the numeric sequences
(instead of one-hot)?

Exercise 3. Effect of padding direction
You were instructed to pad zeros to the beginning of your input
sequences in Exercise 1.

Repeat Exercise 2 with input padded with 0s at the end of se-
quences instead of at the beginning.4

4 Do you get better or worse result?
Why (or why not)? Would you get
better results if data was not ‘case
normalized’?

Exercise 4. Back to logistic regression
Create, train (and tune) a model with a single ’sigmoid’ unit on
(again) one-hot version of the training set (train_onehot), tuning
the (L2) regularization strength.

Print out macro-averaged precision, recall and F-score, and accu-
racy on the test set.5 5 Can this model have a chance to learn

anything useful? Can you think of
another input representation for this
model to work (better)?

Exercise 5. Recurrent networks
Create, train (and tune) a model on training data (train_x, train_y)
with an Embedding layer followed by a GRU layer, and finally a ‘sig-
moid unit’ for binary classification. Use drop-out after both Embedding

and GRU layers. You can experiment with any of the hyperparameters
you like.6 6 How many hyperparameters do we

have?Print out macro-averaged precision, recall and F-score, and accu-
racy on the test set (test_x, test_y) for the model you choose.7 7 Would padding direction have an

effect similar to Exercise 3? Could
we use one-hot representations here?
What are the benefits (or drawbacks)
of using embeddings instead?


