Exercise 1.

Exercise 2.

SNLP assignment 3: Language identification
Deadline: Jun 13, 2018 @ 10:00 CEST

In this set of exercises, we will train a language identifier using the
corpora we built collaboratively in the first exercise set. Our aim is to
identify the language of a given text. Language identification is gen-
erally considered as a ‘'mostly solved” problem, although interesting
issues remain with closely-related languages and multi-lingual texts
(e.g., including code-switching).

For the sake of exercise, we will build relatively ‘dumb” models in
this assignment. Particularly, the features you are asked to use are
not ideal (though not too bad either) for the task at hand. You are en-
couraged to try better models/methods in Exercise 7, but, otherwise,
please follow the instructions closely for the submitted assignment.

General instructions

This assignment consists of seven exercises. Your solutions should
include a single Python script (download-tweets.py) and a CSV-
formatted data file (tweet-corpus.csv) for Exercise 1. Please create
a single Python script, language-detect.py, for exercises 2 through
6.

For Exercise 7, you can create as many additional code/data files
as you need (or alternatively use the results from Exercise 6 with-
out further effort). However, the requirement is a single data file
predictions.csv, which contains the predicted language codes from
your best model.

Exercises

Gather your data
A subset of the tweet IDs collected by the each participant of Assign-
ment 1 is provided in your assignment repository.

Write a python script, download-tweets.py that

takes a list of file names as in our data set from the command line*
downloads the tweets with the ids

writes a single comma-separated-value (CSV) file with the name
tweet-corpus.csv where the first column is the three-letter language
code, second column is the tweet id, and the last column is the tweet
text?

Feature extraction
Write a Python function that3

reads the CSV file created in Exercise 1

counts the number of character bigrams in each document,

Why am I doing this?

* Experiment with
classification using a real
NLP application

A first, practical exposure
to n-grams and
bag-of-words (or bag of
n-grams) representation

e Experiment with

regularization and model
selection

All source code and data files
must be pushed to your as-
signment repository before
the deadline.

* Although we will only use this fixed
data set in this exercise, your code
should be able to handle any file list
given on the command line.

2You are recommended to use a li-
brary, e.g., Python csv library, for writ-
ing (and later reading) the data.

3 Do not use sklearn ‘vectorizer’ mod-
els in this exercise. Although, this exer-
cise takes only a few lines to solve us-
ing sklearn.feature_extraction.text
.CountVectorizer, you are required to
implement it yourself for the sake of ex-
ercise.



Exercise 3.

Exercise 4.

Exercise 5.

Exercise 6.

Exercise 7.

SNLP ASSIGNMENT 3: LANGUAGE IDENTIFICATION 2

and returns a tuple containing:

— a matrix whose rows correspond to the tweets, and columns cor-
respond to the every bigram that occurs in the data set*

- associated language codes

Logistic regression

Train a Logistic regression classifier (using sklearn.linear_model.

LogisticRegression) on the complete data set created in Exercise 2.
Print out the accuracy of your model on the training set using

score() method of the model.

Precision, recall, F-score

¢ Write a function that takes two sequences (gold-standard labels
and predicted labels) and a label (language code), and returns the
precision, recall, and F1-score with respect to the given label.>

¢ Print out macro averaged precision, recall, and F1-score of the model
trained in Exercise 3 on the training set.

K-fold CV
Implement a function that performs k-fold validation.®

Using your function, output the mean of the macro-averaged pre-
cision, recall and F1-score over 5-fold cross validation.

Model selection
The model we studied here is rather simple, it has a single hyperpa-
rameter, the regularization constant.

Tune your model, searching the value of the hyperparameter that
yields the best macro-averaged Fi-score. Output the value of the
hyperparameter as well as the precision, recall and F1-score obtained
with it.

A challenge

Tune a classifier that would achieve the best macro-averaged F1-score
with the given training set. For this exercise, you can use any classifi-
cation algorithm, or any features that you can extract from the given
training set.”

You will be required to produce predictions on a test set that will
be released the day before the deadline. The test data for this exer-
cise will be in the same format as the CSV file, except the language
codes and tweet IDs will be replaced by an underscore. A sample
test set file is provided as testset-sample.csv in your assignment
repository. The output file (predictions.csv) should be in the same
format, but include the language codes as the first field of the CSV
file. Further instructions will be provided together with the real test
data.

The teams with the best scores (if statistically not different from
the best score) will receive and additional bonus point.

+You may want to use a sparse matrix
implementation from scipy package in
case you encounter memory issues.

5Again, do not use the implemen-
tation from sklearn.metrics package,
but implement the function yourself.

®Yet again, do not use the implemen-
tation from sklearn.model_selection
package, but implement the function
yourself.

7The use of external resources are
not allowed. Your model should be
tuned and tested only on the data pro-
vided (you can also use the sample
gold-standard data set from the file
testset-sample+gold.csv for tuning in
the previous and current exercise).

You are also recommended to stick
to the classifiers implemented in the
sklearn package.



